sync: improved deformable shape

metadata
Wenzel Jakob 2014-06-06 00:58:25 +02:00
parent a6e8170620
commit b09a7a3c9d
3 changed files with 456 additions and 218 deletions

View File

@ -20,7 +20,7 @@ add_shape(hair hair.h hair.cpp)
add_shape(shapegroup shapegroup.h shapegroup.cpp)
add_shape(instance instance.h instance.cpp)
add_shape(heightfield heightfield.cpp)
#add_shape(deformable deformable.cpp)
add_shape(deformable deformable.cpp)
add_shape(ply ply.cpp ply/ply_parser.cpp
ply/byte_order.hpp ply/config.hpp ply/io_operators.hpp
ply/ply.hpp ply/ply_parser.hpp)

View File

@ -13,6 +13,6 @@ plugins += env.SharedLibrary('shapegroup', ['shapegroup.cpp'])
plugins += env.SharedLibrary('instance', ['instance.cpp'])
plugins += env.SharedLibrary('cube', ['cube.cpp'])
plugins += env.SharedLibrary('heightfield', ['heightfield.cpp'])
#plugins += env.SharedLibrary('deformable', ['deformable.cpp'])
plugins += env.SharedLibrary('deformable', ['deformable.cpp'])
Export('plugins')

View File

@ -35,20 +35,109 @@ class SpaceTimeKDTree : public SAHKDTree4D<SpaceTimeKDTree> {
public:
/// Temporarily holds some intersection information
struct IntersectionCache {
Point p[3];
IndexType frameIndex;
Float alpha;
IndexType shapeIndex, primIndex;
Float u, v;
};
SpaceTimeKDTree(const std::vector<Float> &frameTimes, std::vector<float *> &positions,
Triangle *triangles, size_t vertexCount, size_t triangleCount)
: m_frameTimes(frameTimes), m_positions(positions), m_triangles(triangles),
m_vertexCount(vertexCount), m_triangleCount(triangleCount) {
SpaceTimeKDTree(const std::vector<Float> &times) : m_times(times) { }
Log(EInfo, "Total amount of vertex data: %s",
memString(vertexCount*frameTimes.size()*sizeof(float)*3).c_str());
SpaceTimeKDTree(Stream *stream, InstanceManager *manager) {
size_t times = (size_t) stream->readUInt();
m_times.resize(times);
m_meshes.resize(times);
for (size_t i=0; i<times; ++i) {
m_times[i] = stream->readFloat();
size_t count = (size_t) stream->readUInt();
std::vector<const TriMesh *> &meshes = m_meshes.at(i);
meshes.resize(count);
for (size_t j=0; j<count; ++j)
meshes[j] = static_cast<TriMesh *>(manager->getInstance(stream));
}
}
//setClip(false);
//setExactPrimitiveThreshold(10);
~SpaceTimeKDTree() {
for (size_t i=0; i<m_meshes.size(); ++i)
for (size_t j=0; j<m_meshes[i].size(); ++j)
m_meshes[i][j]->decRef();
}
void serialize(Stream *stream, InstanceManager *manager) const {
stream->writeUInt((uint32_t) m_times.size());
for (size_t i=0; i<m_times.size(); ++i) {
const std::vector<const TriMesh *> &meshes = m_meshes.at(i);
stream->writeFloat(m_times[i]);
stream->writeUInt((uint32_t) meshes.size());
for (size_t j=0; j<meshes.size(); ++j)
manager->serialize(stream, meshes[j]);
}
}
void addShape(Shape *shape) {
std::vector<const TriMesh *> vec;
size_t index = 0;
if (shape->getClass()->derivesFrom(MTS_CLASS(TriMesh))) {
shape->incRef();
vec.push_back(static_cast<TriMesh *>(shape));
} else if (shape->isCompound()) {
do {
ref<Shape> element = shape->getElement(index++);
if (element == NULL)
break;
if (!element->getClass()->derivesFrom(MTS_CLASS(TriMesh)))
Log(EError, "Can only add triangle meshes to the 'deformable' plugin");
element->incRef();
vec.push_back(static_cast<TriMesh *>(element.get()));
} while (true);
}
if (vec.empty())
Log(EError, "Can only add triangle meshes to the 'deformable' plugin");
else
m_meshes.push_back(vec);
}
void build() {
if (m_meshes.size() < 2)
Log(EError, "The deformable shape requires at least two sub-shapes!");
if (m_meshes.size() != m_times.size()) {
Log(EError, "The number of arguments to the 'times' parameter (%u) must "
"match the number of sub-shapes (%u).", m_times.size(), m_meshes.size());
}
for (size_t i=1; i<m_meshes.size(); ++i) {
const std::vector<const TriMesh *> &meshes = m_meshes[i];
if (m_times[i] <= m_times[i-1])
Log(EError, "Frame times must be increasing!");
if (meshes.size() != m_meshes[0].size())
Log(EError, "The number of compound shapes for each time value must be identical!");
for (size_t j=0;j<m_meshes[0].size(); ++j) {
const TriMesh *mesh0 = m_meshes[0][j];
const TriMesh *mesh1 = m_meshes[i][j];
if (mesh0->getTriangleCount() != mesh1->getTriangleCount())
Log(EError, "All sub-meshes must have the exact same number of triangles");
if (mesh0->getVertexCount() != mesh1->getVertexCount())
Log(EError, "All sub-meshes must have the exact same number of triangles");
if (memcmp(mesh0->getTriangles(), mesh1->getTriangles(), sizeof(Triangle) * mesh0->getTriangleCount()) != 0)
Log(EError, "All sub-meshes must have the exact same face topology");
}
}
m_shapeMap.resize(m_meshes[0].size()+1);
m_shapeMap[0] = 0;
for (size_t i=0; i<m_meshes[0].size(); ++i)
m_shapeMap[i+1] = m_shapeMap[i] + (SizeType) m_meshes[0][i]->getTriangleCount();
this->setClip(false);
buildInternal();
/* Collect some statistics */
@ -82,17 +171,16 @@ public:
);
}
/// Return one of the points stored in the point cache
inline Point getPoint(uint32_t frame, uint32_t index) const {
float *ptr = m_positions[frame] + index*3;
#if defined(__LITTLE_ENDIAN__)
return Point(
(Float) endianness_swap(ptr[0]),
(Float) endianness_swap(ptr[1]),
(Float) endianness_swap(ptr[2]));
#else
return Point((Float) ptr[0], (Float) ptr[1], (Float) ptr[2]);
#endif
inline IndexType findShape(IndexType &index) const {
std::vector<IndexType>::const_iterator it = std::lower_bound(
m_shapeMap.begin(), m_shapeMap.end(), index + 1) - 1;
index -= *it;
return (IndexType) (it - m_shapeMap.begin());
}
inline IndexType findFrame(Float time) const {
return (IndexType) std::min(std::max((int) (std::lower_bound(
m_times.begin(), m_times.end(), time) - m_times.begin()) - 1, 0), (int) m_times.size()-1);
}
// ========================================================================
@ -101,137 +189,119 @@ public:
/// Return the total number of primitives that are organized in the tree
inline SizeType getPrimitiveCount() const {
#ifdef SHAPE_PER_SEGMENT
return m_triangleCount * (m_frameTimes.size() - 1);
#else
return m_triangleCount;
#endif
return m_shapeMap[m_shapeMap.size()-1];
}
/// Return the 4D extents for one of the primitives contained in the tree
AABB4 getAABB(IndexType index) const {
#ifdef SHAPE_PER_SEGMENT
int frameIdx = index / m_triangleCount;
int triangleIdx = index % m_triangleCount;
const Triangle &tri = m_triangles[triangleIdx];
IndexType shapeIndex = findShape(index);
const Triangle &tri = m_meshes[0][shapeIndex]->getTriangles()[index];
AABB aabb;
for (int i=0; i<3; ++i) {
aabb.expandBy(getPoint(frameIdx, tri.idx[i]));
aabb.expandBy(getPoint(frameIdx+1, tri.idx[i]));
for (size_t frame=0; frame<m_times.size(); ++frame) {
const Point *pos = m_meshes[frame][shapeIndex]->getVertexPositions();
for (int j=0; j<3; ++j)
aabb.expandBy(pos[tri.idx[j]]);
}
return AABB4(
Point4(aabb.min.x, aabb.min.y, aabb.min.z, m_frameTimes[frameIdx]),
Point4(aabb.max.x, aabb.max.y, aabb.max.z, m_frameTimes[frameIdx+1])
Point4(aabb.min.x, aabb.min.y, aabb.min.z, m_times[0]),
Point4(aabb.max.x, aabb.max.y, aabb.max.z, m_times[m_times.size()-1])
);
#else
AABB aabb;
const Triangle &tri = m_triangles[index];
for (size_t i=0; i<m_frameTimes.size(); ++i)
for (int j=0; j<3; ++j)
aabb.expandBy(getPoint(i, tri.idx[j]));
return AABB4(
Point4(aabb.min.x, aabb.min.y, aabb.min.z, m_frameTimes[0]),
Point4(aabb.max.x, aabb.max.y, aabb.max.z, m_frameTimes[m_frameTimes.size()-1])
);
#endif
}
/// Return a clipped 4D AABB for one of the primitives contained in the tree
AABB4 getClippedAABB(int index, const AABB4 &box) const {
AABB4 getClippedAABB(IndexType index, const AABB4 &box) const {
AABB clip(
Point(box.min.x, box.min.y, box.min.z),
Point(box.max.x, box.max.y, box.max.z)
);
#ifdef NO_CLIPPING_SUPPORT
AABB4 aabb = getAABB(index);
aabb.clip(box);
return aabb;
#elif SHAPE_PER_SEGMENT
int frameIdx = index / m_triangleCount;
int triangleIdx = index % m_triangleCount;
#if 0
int startIndex = findFrame(box.min.w),
endIndex = findFrameUpperBound(box.max.w);
AABB aabb(m_triangles[triangleIdx].getClippedAABB(m_positions[frameIdx], clip)); /// XXX broken
aabb.expandBy(m_triangles[triangleIdx].getClippedAABB(m_positions[frameIdx+1], clip));
if (aabb.isValid())
return AABB4(
Point4(aabb.min.x, aabb.min.y, aabb.min.z, box.min.w),
Point4(aabb.max.x, aabb.max.y, aabb.max.z, box.max.w));
else
return AABB4();
#else
int startIndex = std::max((int) (std::lower_bound(m_frameTimes.begin(), m_frameTimes.end(),
box.min.w) - m_frameTimes.begin()) - 1, 0);
int endIndex = (int) (std::lower_bound(m_frameTimes.begin(), m_frameTimes.end(),
box.max.w) - m_frameTimes.begin());
AABB4 result;
const Triangle &tri = m_triangles[index];
IndexType shapeIndex = findShape(index);
const Triangle &tri = m_meshes[0][shapeIndex]->getTriangles()[index];
for (int i=startIndex; i<=endIndex; ++i) {
Point p0 = getPoint(i, tri.idx[0]);
Point p1 = getPoint(i, tri.idx[1]);
Point p2 = getPoint(i, tri.idx[2]);
AABB aabb(Triangle::getClippedAABB(p0, p1, p2, clip));
for (int frame=startIndex; frame<=endIndex; ++frame) {
const Point *pos = m_meshes[frame][shapeIndex]->getVertexPositions();
AABB aabb = tri.getClippedAABB(pos, clip);
if (aabb.isValid()) {
result.expandBy(Point4(aabb.min.x, aabb.min.y, aabb.min.z, m_frameTimes[i]));
result.expandBy(Point4(aabb.max.x, aabb.max.y, aabb.max.z, m_frameTimes[i]));
result.expandBy(Point4(aabb.min.x, aabb.min.y, aabb.min.z, m_times[frame]));
result.expandBy(Point4(aabb.max.x, aabb.max.y, aabb.max.z, m_times[frame]));
}
}
#endif
AABB4 result = getAABB(index);
result.clip(box);
return result;
#endif
}
/// Cast a normal (i.e. non-shadow) ray against a specific animated triangle
inline bool intersect(const Ray &ray, IndexType idx,
inline bool intersect(const Ray &ray, IndexType index,
Float mint, Float maxt, Float &t, void *tmp) const {
#if SHAPE_PER_SEGMENT
IndexType frameIdx = idx / m_triangleCount;
IndexType triangleIdx = idx % m_triangleCount;
#else
IndexType triangleIdx = idx;
IndexType frameIdx = (IndexType) std::max((int) (std::lower_bound(
m_frameTimes.begin(), m_frameTimes.end(), ray.time) -
m_frameTimes.begin()) - 1, 0);
#endif
const Triangle &tri = m_triangles[triangleIdx];
IntersectionCache *cache = static_cast<IntersectionCache *>(tmp);
IndexType shapeIndex = findShape(index);
IndexType frameIndex = findFrame(ray.time);
Float alpha = std::max((Float) 0.0f, std::min((Float) 1.0f,
(ray.time - m_times[frameIndex])
/ (m_times[frameIndex + 1] - m_times[frameIndex])));
Float alpha = (ray.time - m_frameTimes[frameIdx])
/ (m_frameTimes[frameIdx + 1] - m_frameTimes[frameIdx]);
const Triangle &tri = m_meshes[0][shapeIndex]->getTriangles()[index];
if (alpha < 0 || alpha > 1)
return false;
const Point *pos0 = m_meshes[frameIndex ][shapeIndex]->getVertexPositions();
const Point *pos1 = m_meshes[frameIndex+1][shapeIndex]->getVertexPositions();
/* Compute interpolated positions */
Point p[3];
for (int i=0; i<3; ++i)
p[i] = (1 - alpha) * getPoint(frameIdx, tri.idx[i])
+ alpha * getPoint(frameIdx+1, tri.idx[i]);
p[i] = (1 - alpha) * pos0[tri.idx[i]] + alpha * pos1[tri.idx[i]];
Float tempU, tempV, tempT;
if (!Triangle::rayIntersect(p[0], p[1], p[2], ray, tempU, tempV, tempT))
return false;
if (tempT < mint || tempT > maxt)
return false;
if (tmp != NULL) {
IntersectionCache *cache =
static_cast<IntersectionCache *>(tmp);
t = tempT;
memcpy(cache->p, p, sizeof(Point)*3);
cache->u = tempU;
cache->v = tempV;
}
t = tempT;
cache->frameIndex = frameIndex;
cache->alpha = alpha;
cache->shapeIndex = shapeIndex;
cache->primIndex = index;
cache->u = tempU;
cache->v = tempV;
return true;
}
/// Cast a shadow ray against a specific triangle
inline bool intersect(const Ray &ray, IndexType idx,
Float mint, Float maxt) const {
Float tempT;
/* No optimized version for shadow rays yet */
return intersect(ray, idx, mint, maxt, tempT, NULL);
inline bool intersect(const Ray &ray, IndexType index, Float mint, Float maxt) const {
IndexType shapeIndex = findShape(index);
const Triangle &tri = m_meshes[0][shapeIndex]->getTriangles()[index];
IndexType frameIndex = findFrame(ray.time);
Float alpha = std::max((Float) 0.0f, std::min((Float) 1.0f,
(ray.time - m_times[frameIndex])
/ (m_times[frameIndex + 1] - m_times[frameIndex])));
const Point *pos0 = m_meshes[frameIndex ][shapeIndex]->getVertexPositions();
const Point *pos1 = m_meshes[frameIndex+1][shapeIndex]->getVertexPositions();
/* Compute interpolated positions */
Point p[3];
for (int i=0; i<3; ++i)
p[i] = (1 - alpha) * pos0[tri.idx[i]] + alpha * pos1[tri.idx[i]];
Float tempU, tempV, tempT;
if (!Triangle::rayIntersect(p[0], p[1], p[2], ray, tempU, tempV, tempT))
return false;
if (tempT < mint || tempT > maxt)
return false;
return true;
}
// ========================================================================
@ -241,6 +311,8 @@ public:
/// Intersect a ray with all primitives stored in the kd-tree
inline bool rayIntersect(const Ray &ray, Float _mint, Float _maxt,
Float &t, void *temp) const {
IntersectionCache *cache = static_cast<IntersectionCache *>(temp);
Float tempT = std::numeric_limits<Float>::infinity();
Float mint, maxt;
@ -248,8 +320,8 @@ public:
if (_mint > mint) mint = _mint;
if (_maxt < maxt) maxt = _maxt;
if (EXPECT_TAKEN(maxt > mint && ray.time >= m_aabb.min.w && ray.time <= m_aabb.max.w)) {
if (rayIntersectHavran<false>(ray, mint, maxt, tempT, temp)) {
if (EXPECT_TAKEN(maxt > mint)) {
if (rayIntersectHavran<false>(ray, mint, maxt, tempT, cache)) {
t = tempT;
return true;
}
@ -270,107 +342,78 @@ public:
if (_mint > mint) mint = _mint;
if (_maxt < maxt) maxt = _maxt;
if (EXPECT_TAKEN(maxt > mint && ray.time >= m_aabb.min.w && ray.time <= m_aabb.max.w))
if (EXPECT_TAKEN(maxt > mint)) {
if (rayIntersectHavran<true>(ray, mint, maxt, tempT, NULL))
return true;
}
}
return false;
}
inline const Triangle *getTriangles() const {
return m_triangles;
}
/// Return an AABB with the spatial extents
inline const AABB &getSpatialAABB() const {
return m_spatialAABB;
}
/// Return the number of key-framed time values
inline size_t getTimeCount() const {
return m_times.size();
}
inline const std::vector<Float> getTimes() const {
return m_times;
}
inline const TriMesh *getMesh(IndexType frameIndex, IndexType shapeIndex) const {
return m_meshes[frameIndex][shapeIndex];
}
inline Triangle getTriangle(IndexType shapeIndex, IndexType primIndex) const {
return m_meshes[0][shapeIndex]->getTriangles()[primIndex];
}
inline const std::vector<std::vector<const TriMesh *> > &getMeshes() const {
return m_meshes;
}
MTS_DECLARE_CLASS()
protected:
std::vector<Float> m_frameTimes;
std::vector<float *> m_positions;
Triangle *m_triangles;
size_t m_vertexCount;
size_t m_triangleCount;
std::vector<Float> m_times;
std::vector<std::vector<const TriMesh *> > m_meshes;
std::vector<IndexType> m_shapeMap;
AABB m_spatialAABB;
Float m_traceTime;
};
class Deformable : public Shape {
public:
Deformable(const Properties &props) : Shape(props) {
FileResolver *fResolver = Thread::getThread()->getFileResolver();
fs::path path = fResolver->resolve(props.getString("filename"));
if (path.extension() != ".mdd")
Log(EError, "Point cache files must have the extension \".mdd\"");
std::vector<std::string> times_str =
tokenize(props.getString("times", ""), " ,;");
std::vector<Float> times(times_str.size());
m_mmap = new MemoryMappedFile(path);
ref<MemoryStream> mStream = new MemoryStream((uint8_t *) m_mmap->getData(),
m_mmap->getSize());
mStream->setByteOrder(Stream::EBigEndian);
uint32_t frameCount = mStream->readUInt();
m_vertexCount = mStream->readUInt();
Log(EInfo, "Point cache has %i frames and %i vertices", frameCount, m_vertexCount);
Float clipStart = props.getFloat("clipStart", 0),
clipEnd = props.getFloat("clipEnd", 0);
std::vector<Float> frameTimes;
std::vector<float *> positions;
for (uint32_t i=0; i<frameCount; ++i)
frameTimes.push_back((Float) mStream->readSingle());
for (uint32_t i=0; i<frameCount; ++i) {
positions.push_back(reinterpret_cast<float *>(mStream->getCurrentData()));
mStream->skip(m_vertexCount * 3 * sizeof(float));
}
if (clipStart != clipEnd) {
m_positions.reserve(positions.size());
m_frameTimes.reserve(frameTimes.size());
for (uint32_t i=0; i<frameCount; ++i) {
if (frameTimes[i] >= clipStart && frameTimes[i] <= clipEnd) {
m_frameTimes.push_back(frameTimes[i]);
m_positions.push_back(positions[i]);
}
}
if (m_frameTimes.empty())
Log(EError, "After clipping to the time range [%f, %f] no frames were left!",
clipStart, clipEnd);
Log(EInfo, "Clipped away %u/%u frames", frameCount - (uint32_t) m_frameTimes.size(), frameCount);
} else {
m_positions = positions;
m_frameTimes = frameTimes;
char *end_ptr = NULL;
for (size_t i=0; i<times_str.size(); ++i) {
Float value = (Float) strtod(times_str[i].c_str(), &end_ptr);
if (*end_ptr != '\0')
SLog(EError, "Could not parse the times parameter!");
times[i] = value;
}
m_kdtree = new SpaceTimeKDTree(times);
}
Deformable(Stream *stream, InstanceManager *manager)
: Shape(stream, manager) {
/// TBD
m_kdtree = new SpaceTimeKDTree(stream, manager);
}
void serialize(Stream *stream, InstanceManager *manager) const {
Shape::serialize(stream, manager);
/// TBD
m_kdtree->serialize(stream, manager);
}
void configure() {
Shape::configure();
if (m_mesh == NULL)
Log(EError, "A nested triangle mesh is required so that "
"connectivity information can be extracted!");
if (m_mesh->getVertexCount() != m_vertexCount)
Log(EError, "Point cache and nested geometry have mismatched "
"numbers of vertices!");
m_kdtree = new SpaceTimeKDTree(m_frameTimes, m_positions, m_mesh->getTriangles(),
m_vertexCount, m_mesh->getTriangleCount());
m_aabb = m_kdtree->getSpatialAABB();
m_kdtree->build();
}
bool rayIntersect(const Ray &ray, Float mint,
@ -385,83 +428,278 @@ public:
void fillIntersectionRecord(const Ray &ray,
const void *temp, Intersection &its) const {
const SpaceTimeKDTree::IntersectionCache *cache
= reinterpret_cast<const SpaceTimeKDTree::IntersectionCache *>(temp);
= static_cast<const SpaceTimeKDTree::IntersectionCache *>(temp);
const TriMesh *trimesh0 = m_kdtree->getMesh(cache->frameIndex, cache->shapeIndex);
const TriMesh *trimesh1 = m_kdtree->getMesh(cache->frameIndex+1, cache->shapeIndex);
const Vector b(1 - cache->u - cache->v, cache->u, cache->v);
const Point p0 = cache->p[0];
const Point p1 = cache->p[1];
const Point p2 = cache->p[2];
const Triangle tri = m_kdtree->getTriangle(cache->shapeIndex, cache->primIndex);
const uint32_t idx0 = tri.idx[0], idx1 = tri.idx[1], idx2 = tri.idx[2];
const Float alpha = cache->alpha;
Normal faceNormal(cross(p1-p0, p2-p0));
const Point *vertexPositions0 = trimesh0->getVertexPositions();
const Point *vertexPositions1 = trimesh1->getVertexPositions();
const Normal *vertexNormals0 = trimesh0->getVertexNormals();
const Normal *vertexNormals1 = trimesh1->getVertexNormals();
const Point2 *vertexTexcoords0 = trimesh0->getVertexTexcoords();
const Point2 *vertexTexcoords1 = trimesh1->getVertexTexcoords();
const Color3 *vertexColors0 = trimesh0->getVertexColors();
const Color3 *vertexColors1 = trimesh1->getVertexColors();
const TangentSpace *vertexTangents0 = trimesh0->getUVTangents();
const TangentSpace *vertexTangents1 = trimesh1->getUVTangents();
const Point p0 = vertexPositions0[idx0] * (1-alpha) + vertexPositions1[idx0] * alpha;
const Point p1 = vertexPositions0[idx1] * (1-alpha) + vertexPositions1[idx1] * alpha;
const Point p2 = vertexPositions0[idx2] * (1-alpha) + vertexPositions1[idx2] * alpha;
its.p = p0 * b.x + p1 * b.y + p2 * b.z;
Vector side1(p1-p0), side2(p2-p0);
Normal faceNormal(cross(side1, side2));
Float length = faceNormal.length();
if (!faceNormal.isZero())
faceNormal /= length;
/* Just the basic attributes for now and geometric normals */
its.p = ray(its.t);
its.geoFrame = Frame(faceNormal);
its.shFrame = its.geoFrame;
if (EXPECT_NOT_TAKEN(vertexTangents0 && vertexTangents1)) {
const TangentSpace &ts0 = vertexTangents0[cache->primIndex];
const TangentSpace &ts1 = vertexTangents1[cache->primIndex];
its.dpdu = (1-alpha) * ts0.dpdu + alpha * ts1.dpdu;
its.dpdv = (1-alpha) * ts0.dpdv + alpha * ts1.dpdv;
} else {
its.dpdu = side1;
its.dpdv = side2;
}
if (EXPECT_TAKEN(vertexNormals0)) {
Normal
n0 = (1-alpha) * vertexNormals0[idx0] + alpha * vertexNormals1[idx0],
n1 = (1-alpha) * vertexNormals0[idx1] + alpha * vertexNormals1[idx1],
n2 = (1-alpha) * vertexNormals0[idx2] + alpha * vertexNormals1[idx2];
its.shFrame.n = normalize(n0 * b.x + n1 * b.y + n2 * b.z);
if (EXPECT_TAKEN(!vertexTangents0)) {
coordinateSystem(its.shFrame.n, its.shFrame.s, its.shFrame.t);
} else {
/* Align shFrame.s with dpdu, use Gram-Schmidt to orthogonalize */
its.shFrame.s = normalize(its.dpdu - its.shFrame.n
* dot(its.shFrame.n, its.dpdu));
its.shFrame.t = cross(its.shFrame.n, its.shFrame.s);
}
/* Ensure that the geometric & shading normals face the same direction */
if (dot(faceNormal, its.shFrame.n) < 0)
faceNormal = -faceNormal;
its.geoFrame = Frame(faceNormal);
} else {
its.shFrame = its.geoFrame = Frame(faceNormal);
}
if (EXPECT_TAKEN(vertexTexcoords0)) {
Point2
t0 = (1-alpha) * vertexTexcoords0[idx0] + alpha * vertexTexcoords1[idx0],
t1 = (1-alpha) * vertexTexcoords0[idx1] + alpha * vertexTexcoords1[idx1],
t2 = (1-alpha) * vertexTexcoords0[idx2] + alpha * vertexTexcoords1[idx2];
its.uv = t0 * b.x + t1 * b.y + t2 * b.z;
} else {
its.uv = Point2(b.y, b.z);
}
if (EXPECT_NOT_TAKEN(vertexColors0)) {
Color3
c0 = (1-alpha) * vertexColors0[idx0] + alpha * vertexColors1[idx0],
c1 = (1-alpha) * vertexColors0[idx1] + alpha * vertexColors1[idx1],
c2 = (1-alpha) * vertexColors0[idx2] + alpha * vertexColors1[idx2];
Color3 result(c0 * b.x + c1 * b.y + c2 * b.z);
its.color.fromLinearRGB(result[0], result[1],
result[2], Spectrum::EReflectance);
}
its.wi = its.toLocal(-ray.d);
its.shape = this;
its.instance = this;
its.shape = m_kdtree->getMesh(0, cache->shapeIndex);
its.hasUVPartials = false;
its.primIndex = cache->primIndex;
its.other = cache->shapeIndex;
its.instance = this;
its.time = ray.time;
}
void getNormalDerivative(const Intersection &its,
Vector &dndu, Vector &dndv, bool shadingFrame) const {
const std::vector<Float> &times = m_kdtree->getTimes();
int frameIndex = m_kdtree->findFrame(its.time);
Float alpha = std::max((Float) 0.0f, std::min((Float) 1.0f,
(its.time - times[frameIndex])
/ (times[frameIndex + 1] - times[frameIndex])));
uint32_t primIndex = its.primIndex, shapeIndex = its.other;
const TriMesh *trimesh0 = m_kdtree->getMesh(frameIndex, shapeIndex);
const TriMesh *trimesh1 = m_kdtree->getMesh(frameIndex+1, shapeIndex);
const Point *vertexPositions0 = trimesh0->getVertexPositions();
const Point *vertexPositions1 = trimesh1->getVertexPositions();
const Point2 *vertexTexcoords0 = trimesh0->getVertexTexcoords();
const Point2 *vertexTexcoords1 = trimesh1->getVertexTexcoords();
const Normal *vertexNormals0 = trimesh0->getVertexNormals();
const Normal *vertexNormals1 = trimesh1->getVertexNormals();
if (!vertexNormals0 || !vertexNormals1) {
dndu = dndv = Vector(0.0f);
} else {
const Triangle &tri = trimesh0->getTriangles()[primIndex];
uint32_t idx0 = tri.idx[0],
idx1 = tri.idx[1],
idx2 = tri.idx[2];
const Point
p0 = (1-alpha)*vertexPositions0[idx0] + alpha*vertexPositions1[idx0],
p1 = (1-alpha)*vertexPositions0[idx1] + alpha*vertexPositions1[idx1],
p2 = (1-alpha)*vertexPositions0[idx2] + alpha*vertexPositions1[idx2];
/* Recompute the barycentric coordinates, since 'its.uv' may have been
overwritten with coordinates of the texture "parameterization". */
Vector rel = its.p - p0, du = p1 - p0, dv = p2 - p0;
Float b1 = dot(du, rel), b2 = dot(dv, rel), /* Normal equations */
a11 = dot(du, du), a12 = dot(du, dv),
a22 = dot(dv, dv),
det = a11 * a22 - a12 * a12;
if (det == 0) {
dndu = dndv = Vector(0.0f);
return;
}
Float invDet = 1.0f / det,
u = ( a22 * b1 - a12 * b2) * invDet,
v = (-a12 * b1 + a11 * b2) * invDet,
w = 1 - u - v;
const Normal
n0 = normalize((1-alpha)*vertexNormals0[idx0] + alpha*vertexNormals1[idx0]),
n1 = normalize((1-alpha)*vertexNormals0[idx1] + alpha*vertexNormals1[idx1]),
n2 = normalize((1-alpha)*vertexNormals0[idx2] + alpha*vertexNormals1[idx2]);
/* Now compute the derivative of "normalize(u*n1 + v*n2 + (1-u-v)*n0)"
with respect to [u, v] in the local triangle parameterization.
Since d/du [f(u)/|f(u)|] = [d/du f(u)]/|f(u)|
- f(u)/|f(u)|^3 <f(u), d/du f(u)>, this results in
*/
Normal N(u * n1 + v * n2 + w * n0);
Float il = 1.0f / N.length(); N *= il;
dndu = (n1 - n0) * il; dndu -= N * dot(N, dndu);
dndv = (n2 - n0) * il; dndv -= N * dot(N, dndv);
if (vertexTexcoords0 && vertexTexcoords1) {
/* Compute derivatives with respect to a specified texture
UV parameterization. */
const Point2
uv0 = (1-alpha)*vertexTexcoords0[idx0] + alpha*vertexTexcoords1[idx0],
uv1 = (1-alpha)*vertexTexcoords0[idx1] + alpha*vertexTexcoords1[idx1],
uv2 = (1-alpha)*vertexTexcoords0[idx2] + alpha*vertexTexcoords1[idx2];
Vector2 duv1 = uv1 - uv0, duv2 = uv2 - uv0;
det = duv1.x * duv2.y - duv1.y * duv2.x;
if (det == 0) {
dndu = dndv = Vector(0.0f);
return;
}
invDet = 1.0f / det;
Vector dndu_ = ( duv2.y * dndu - duv1.y * dndv) * invDet;
Vector dndv_ = (-duv2.x * dndu + duv1.x * dndv) * invDet;
dndu = dndu_; dndv = dndv_;
}
}
}
void adjustTime(Intersection &its, Float time) const {
SpaceTimeKDTree::IntersectionCache cache;
const std::vector<Float> &times = m_kdtree->getTimes();
cache.primIndex = its.primIndex;
cache.shapeIndex = its.other;
cache.frameIndex = m_kdtree->findFrame(its.time);
cache.alpha = std::max((Float) 0.0f, std::min((Float) 1.0f,
(its.time - times[cache.frameIndex])
/ (times[cache.frameIndex + 1] - times[cache.frameIndex])));
const TriMesh *trimesh0 = m_kdtree->getMesh(cache.frameIndex, cache.shapeIndex);
const TriMesh *trimesh1 = m_kdtree->getMesh(cache.frameIndex+1, cache.shapeIndex);
const Point *vertexPositions0 = trimesh0->getVertexPositions();
const Point *vertexPositions1 = trimesh1->getVertexPositions();
const Triangle tri = m_kdtree->getTriangle(cache.shapeIndex, cache.primIndex);
const uint32_t idx0 = tri.idx[0], idx1 = tri.idx[1], idx2 = tri.idx[2];
const Point p0 = vertexPositions0[idx0] * (1-cache.alpha) + vertexPositions1[idx0] * cache.alpha;
const Point p1 = vertexPositions0[idx1] * (1-cache.alpha) + vertexPositions1[idx1] * cache.alpha;
const Point p2 = vertexPositions0[idx2] * (1-cache.alpha) + vertexPositions1[idx2] * cache.alpha;
Vector rel = its.p - p0, du = p1 - p0, dv = p2 - p0;
Float b1 = dot(du, rel), b2 = dot(dv, rel),
a11 = dot(du, du), a12 = dot(du, dv),
a22 = dot(dv, dv),
invDet = 1.0f / (a11 * a22 - a12 * a12);
cache.u = ( a22 * b1 - a12 * b2) * invDet,
cache.v = (-a12 * b1 + a11 * b2) * invDet;
cache.frameIndex = m_kdtree->findFrame(time);
cache.alpha = std::max((Float) 0.0f, std::min((Float) 1.0f,
(time - times[cache.frameIndex])
/ (times[cache.frameIndex + 1] - times[cache.frameIndex])));
fillIntersectionRecord(Ray(Point(0.0f), its.toWorld(-its.wi), time), &cache, its);
}
AABB getAABB() const {
return m_kdtree->getSpatialAABB();
}
size_t getPrimitiveCount() const {
return m_mesh->getTriangleCount();
return m_kdtree->getPrimitiveCount();
}
size_t getEffectivePrimitiveCount() const {
return m_mesh->getTriangleCount();
return m_kdtree->getPrimitiveCount();
}
void addChild(const std::string &name, ConfigurableObject *child) {
const Class *cClass = child->getClass();
if (cClass->derivesFrom(TriMesh::m_theClass)) {
Assert(m_mesh == NULL);
m_mesh = static_cast<TriMesh *>(child);
if (m_mesh->getVertexCount() != m_vertexCount)
Log(EError, "Geometry mismatch! MDD file contains %u vertices. "
"The attached shape uses %u!", m_vertexCount, m_mesh->getVertexCount());
} else if (cClass->derivesFrom(Shape::m_theClass) && static_cast<Shape *>(child)->isCompound()) {
size_t index = 0;
Shape *shape = static_cast<Shape *>(child);
do {
ref<Shape> element = shape->getElement(index++);
if (element == NULL)
break;
addChild(name, element);
} while (true);
} else {
if (child->getClass()->derivesFrom(MTS_CLASS(Shape)))
m_kdtree->addShape(static_cast<Shape *>(child));
else
Shape::addChild(name, child);
}
}
ref<TriMesh> createTriMesh() {
return const_cast<TriMesh *>(m_kdtree->getMesh(0, 0));
}
std::string toString() const {
std::ostringstream oss;
oss << "Deformable[" << endl
<< " mesh = " << indent(m_mesh.toString()) << endl
<< " primitiveCount = " << m_kdtree->getPrimitiveCount() << "," << endl
<< " timeCount = " << m_kdtree->getTimeCount() << "," << endl
<< " aabb = " << indent(m_kdtree->getSpatialAABB().toString()) << endl
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
private:
ref<MemoryMappedFile> m_mmap;
ref<SpaceTimeKDTree> m_kdtree;
std::vector<Float> m_frameTimes;
std::vector<float *> m_positions;
ref<TriMesh> m_mesh;
uint32_t m_vertexCount;
AABB m_aabb;
};
MTS_IMPLEMENT_CLASS(SpaceTimeKDTree, false, KDTreeBase)
MTS_IMPLEMENT_CLASS_S(SpaceTimeKDTree, false, KDTreeBase)
MTS_IMPLEMENT_CLASS_S(Deformable, false, Shape)
MTS_EXPORT_PLUGIN(Deformable, "Deformable shape");
MTS_NAMESPACE_END