switched to a more realistic plastic material that accounts for internal scattering

metadata
Wenzel Jakob 2011-09-07 09:40:57 -04:00
parent 2931e0dd37
commit a16b74eb0f
3 changed files with 518 additions and 17 deletions

View File

@ -5,6 +5,7 @@ plugins += env.SharedLibrary('diffuse', ['diffuse.cpp'])
plugins += env.SharedLibrary('dielectric', ['dielectric.cpp']) plugins += env.SharedLibrary('dielectric', ['dielectric.cpp'])
plugins += env.SharedLibrary('conductor', ['conductor.cpp']) plugins += env.SharedLibrary('conductor', ['conductor.cpp'])
plugins += env.SharedLibrary('plastic', ['plastic.cpp']) plugins += env.SharedLibrary('plastic', ['plastic.cpp'])
plugins += env.SharedLibrary('oldplastic', ['oldplastic.cpp'])
plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp']) plugins += env.SharedLibrary('roughdiffuse', ['roughdiffuse.cpp'])
plugins += env.SharedLibrary('roughdielectric', ['roughdielectric.cpp']) plugins += env.SharedLibrary('roughdielectric', ['roughdielectric.cpp'])
plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp']) plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp'])

449
src/bsdfs/oldplastic.cpp Normal file
View File

@ -0,0 +1,449 @@
/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/hw/basicshader.h>
#include "ior.h"
MTS_NAMESPACE_BEGIN
/*!\plugin{plastic}{Smooth plastic material}
* \order{7}
* \icon{bsdf_plastic}
* \parameters{
* \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified
* numerically or using a known material name. \default{\texttt{polypropylene} / 1.49}}
* \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
* factor used to modulate the specular reflection component. Note that for physical
* realism, this parameter should never be touched. \default{1.0}}
* \parameter{diffuse\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
* factor used to modulate the diffuse reflection component\default{0.5}}
* }
*
* \renderings{
* \rendering{A rendering with the default parameters}{bsdf_plastic_default}
* \rendering{A rendering with custom parameters (\lstref{plastic-shiny})}
* {bsdf_plastic_shiny}
* }
*
* This plugin describes a perfectly smooth plastic-like dielectric material
* with internal scattering. The model interpolates between ideally specular
* and ideally diffuse reflection based on the Fresnel reflectance (i.e. it
* does so in a way that depends on the angle of incidence). Similar to the
* \pluginref{dielectric} plugin, IOR values can either be specified
* numerically, or based on a list of known materials (see
* \tblref{dielectric-iors} for an overview).
*
* Since it is very simple and fast, this model is often a better choice
* than the \pluginref{phong}, \pluginref{ward}, and \pluginref{roughplastic}
* plugins when rendering very smooth plastic-like materials. \vspace{4mm}
*
* \begin{xml}[caption=A shiny material whose diffuse reflectance is
* specified using sRGB, label=lst:plastic-shiny]
* <bsdf type="plastic">
* <srgb name="diffuseReflectance" value="#18455c"/>
* <float name="intIOR" value="1.9"/>
* </bsdf>
* \end{xml}
*/
class SmoothPlastic : public BSDF {
public:
SmoothPlastic(const Properties &props) : BSDF(props) {
/* Specifies the internal index of refraction at the interface */
m_intIOR = lookupIOR(props, "intIOR", "polypropylene");
/* Specifies the external index of refraction at the interface */
m_extIOR = lookupIOR(props, "extIOR", "air");
m_specularReflectance = new ConstantSpectrumTexture(
props.getSpectrum("specularReflectance", Spectrum(1.0f)));
m_diffuseReflectance = new ConstantSpectrumTexture(
props.getSpectrum("diffuseReflectance", Spectrum(0.5f)));
m_specularSamplingWeight = 0.0f;
}
SmoothPlastic(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat();
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_diffuseReflectance = static_cast<Texture *>(manager->getInstance(stream));
configure();
}
void configure() {
/* Verify the input parameters and fix them if necessary */
m_specularReflectance = ensureEnergyConservation(
m_specularReflectance, "specularReflectance", 1.0f);
m_diffuseReflectance = ensureEnergyConservation(
m_diffuseReflectance, "diffuseReflectance", 1.0f);
/* Compute weights that further steer samples towards
the specular or diffuse components */
Float dAvg = m_diffuseReflectance->getAverage().getLuminance(),
sAvg = m_specularReflectance->getAverage().getLuminance();
m_specularSamplingWeight = sAvg / (dAvg + sAvg);
m_usesRayDifferentials =
m_specularReflectance->usesRayDifferentials() ||
m_diffuseReflectance->usesRayDifferentials();
m_components.clear();
m_components.push_back(EDeltaReflection | EFrontSide
| (m_specularReflectance->isConstant() ? 0 : ESpatiallyVarying));
m_components.push_back(EDiffuseReflection | EFrontSide
| (m_diffuseReflectance->isConstant() ? 0 : ESpatiallyVarying));
BSDF::configure();
}
Spectrum getDiffuseReflectance(const Intersection &its) const {
return m_diffuseReflectance->getValue(its);
}
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
stream->writeFloat(m_intIOR);
stream->writeFloat(m_extIOR);
manager->serialize(stream, m_specularReflectance.get());
manager->serialize(stream, m_diffuseReflectance.get());
}
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
if (name == "specularReflectance")
m_specularReflectance = static_cast<Texture *>(child);
else if (name == "diffuseReflectance")
m_diffuseReflectance = static_cast<Texture *>(child);
else
BSDF::addChild(name, child);
} else {
BSDF::addChild(name, child);
}
}
/// Reflection in local coordinates
inline Vector reflect(const Vector &wi) const {
return Vector(-wi.x, -wi.y, wi.z);
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
bool hasSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 1);
if (Frame::cosTheta(bRec.wo) <= 0 || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
if (measure == EDiscrete && hasSpecular) {
/* Check if the provided direction pair matches an ideal
specular reflection; tolerate some roundoff errors */
bool reflection = std::abs(1 - dot(reflect(bRec.wi), bRec.wo)) < Epsilon;
if (reflection)
return m_specularReflectance->getValue(bRec.its) * Fr;
} else if (measure == ESolidAngle && hasDiffuse) {
if (hasDiffuse)
return m_diffuseReflectance->getValue(bRec.its)
* (INV_PI * Frame::cosTheta(bRec.wo) * (1-Fr));
}
return Spectrum(0.0f);
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
bool hasSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 1);
if (Frame::cosTheta(bRec.wo) <= 0 || Frame::cosTheta(bRec.wi) <= 0)
return 0.0f;
Float probSpecular = 1.0f;
if (hasSpecular && hasDiffuse) {
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
probSpecular = (Fr*m_specularSamplingWeight) /
(Fr*m_specularSamplingWeight +
(1-Fr) * (1-m_specularSamplingWeight));
}
if (measure == EDiscrete && hasSpecular) {
/* Check if the provided direction pair matches an ideal
specular reflection; tolerate some roundoff errors */
if (std::abs(1 - dot(reflect(bRec.wi), bRec.wo)) < Epsilon)
return probSpecular;
} else if (measure == ESolidAngle && hasDiffuse) {
return Frame::cosTheta(bRec.wo) * INV_PI *
(hasSpecular ? (1 - probSpecular) : 1.0f);
}
return 0.0f;
}
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
bool hasSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 1);
if ((!hasDiffuse && !hasSpecular) || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
Float probSpecular = (Fr*m_specularSamplingWeight) /
(Fr*m_specularSamplingWeight +
(1-Fr) * (1-m_specularSamplingWeight));
if (hasDiffuse && hasSpecular) {
/* Importance sample wrt. the Fresnel reflectance */
if (sample.x <= probSpecular) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
return m_specularReflectance->getValue(bRec.its) *
(Fr / probSpecular);
} else {
bRec.sampledComponent = 1;
bRec.sampledType = EDiffuseReflection;
bRec.wo = squareToHemispherePSA(Point2(
(sample.x - probSpecular) / (1 - probSpecular),
sample.y
));
return m_diffuseReflectance->getValue(bRec.its) *
((1-Fr) / (1-probSpecular));
}
} else if (hasSpecular) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
return m_specularReflectance->getValue(bRec.its) * Fr;
} else {
bRec.sampledComponent = 1;
bRec.sampledType = EDiffuseReflection;
if (Fr == 1.0f) /* Total internal reflection */
return Spectrum(0.0f);
bRec.wo = squareToHemispherePSA(sample);
return m_diffuseReflectance->getValue(bRec.its) * (1-Fr);
}
}
Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &sample) const {
bool hasSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool hasDiffuse = (bRec.typeMask & EDiffuseReflection)
&& (bRec.component == -1 || bRec.component == 1);
if ((!hasDiffuse && !hasSpecular) || Frame::cosTheta(bRec.wi) <= 0)
return Spectrum(0.0f);
Float Fr = fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
Float probSpecular = (Fr*m_specularSamplingWeight) /
(Fr*m_specularSamplingWeight +
(1-Fr) * (1-m_specularSamplingWeight));
if (hasDiffuse && hasSpecular) {
/* Importance sample wrt. the Fresnel reflectance */
if (sample.x <= probSpecular) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
pdf = probSpecular;
return m_specularReflectance->getValue(bRec.its)
* Fr / probSpecular;
} else {
bRec.sampledComponent = 1;
bRec.sampledType = EDiffuseReflection;
bRec.wo = squareToHemispherePSA(Point2(
(sample.x - probSpecular) / (1 - probSpecular),
sample.y
));
pdf = (1-probSpecular) * Frame::cosTheta(bRec.wo) * INV_PI;
return m_diffuseReflectance->getValue(bRec.its)
* (1-Fr) / (1-probSpecular);
}
} else if (hasSpecular) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
pdf = 1;
return m_specularReflectance->getValue(bRec.its) * Fr;
} else {
bRec.sampledComponent = 1;
bRec.sampledType = EDiffuseReflection;
if (Fr == 1.0f) /* Total internal reflection */
return Spectrum(0.0f);
bRec.wo = squareToHemispherePSA(sample);
pdf = Frame::cosTheta(bRec.wo) * INV_PI;
return m_diffuseReflectance->getValue(bRec.its) * (1-Fr);
}
}
Shader *createShader(Renderer *renderer) const;
std::string toString() const {
std::ostringstream oss;
oss << "SmoothPlastic[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " specularReflectance = " << indent(m_specularReflectance->toString()) << "," << endl
<< " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
<< " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl
<< " intIOR = " << m_intIOR << "," << endl
<< " extIOR = " << m_extIOR << endl
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
private:
Float m_intIOR, m_extIOR;
ref<Texture> m_diffuseReflectance;
ref<Texture> m_specularReflectance;
Float m_specularSamplingWeight;
};
/**
* Smooth plastic shader -- it is really hopeless to visualize
* this material in the VPL renderer, so let's try to do at least
* something that suggests the presence of a specularly-reflecting
* dielectric coating.
*/
class SmoothPlasticShader : public Shader {
public:
SmoothPlasticShader(Renderer *renderer, const Texture *specularReflectance,
const Texture *diffuseReflectance, Float extIOR,
Float intIOR) : Shader(renderer, EBSDFShader),
m_specularReflectance(specularReflectance),
m_diffuseReflectance(diffuseReflectance),
m_extIOR(extIOR), m_intIOR(intIOR) {
m_specularReflectanceShader = renderer->registerShaderForResource(m_specularReflectance.get());
m_diffuseReflectanceShader = renderer->registerShaderForResource(m_diffuseReflectance.get());
m_alpha = 0.4f;
m_R0 = fresnel(1.0f, m_extIOR, m_intIOR);
}
bool isComplete() const {
return m_specularReflectanceShader.get() != NULL &&
m_diffuseReflectanceShader.get() != NULL;
}
void putDependencies(std::vector<Shader *> &deps) {
deps.push_back(m_specularReflectanceShader.get());
deps.push_back(m_diffuseReflectanceShader.get());
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_specularReflectance.get());
renderer->unregisterShaderForResource(m_diffuseReflectance.get());
}
void resolve(const GPUProgram *program, const std::string &evalName, std::vector<int> &parameterIDs) const {
parameterIDs.push_back(program->getParameterID(evalName + "_alpha", false));
parameterIDs.push_back(program->getParameterID(evalName + "_R0", false));
}
void bind(GPUProgram *program, const std::vector<int> &parameterIDs, int &textureUnitOffset) const {
program->setParameter(parameterIDs[0], m_alpha);
program->setParameter(parameterIDs[1], m_R0);
}
void generateCode(std::ostringstream &oss,
const std::string &evalName,
const std::vector<std::string> &depNames) const {
oss << "uniform float " << evalName << "_alpha;" << endl
<< "uniform float " << evalName << "_R0;" << endl
<< endl
<< "float " << evalName << "_D(vec3 m) {" << endl
<< " float ct = cosTheta(m);" << endl
<< " if (cosTheta(m) <= 0.0)" << endl
<< " return 0.0;" << endl
<< " float ex = tanTheta(m) / " << evalName << "_alpha;" << endl
<< " return exp(-(ex*ex)) / (pi * " << evalName << "_alpha" << endl
<< " * " << evalName << "_alpha * pow(cosTheta(m), 4.0));" << endl
<< "}" << endl
<< endl
<< "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl
<< " if ((dot(wi, m) * cosTheta(wi)) <= 0 || " << endl
<< " (dot(wo, m) * cosTheta(wo)) <= 0)" << endl
<< " return 0.0;" << endl
<< " float nDotM = cosTheta(m);" << endl
<< " return min(1.0, min(" << endl
<< " abs(2 * nDotM * cosTheta(wo) / dot(wo, m))," << endl
<< " abs(2 * nDotM * cosTheta(wi) / dot(wi, m))));" << endl
<< "}" << endl
<< endl
<< "float " << evalName << "_schlick(float ct) {" << endl
<< " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl
<< " return " << evalName << "_R0 + (1.0 - " << evalName << "_R0) * ct5;" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " if (cosTheta(wi) <= 0 || cosTheta(wo) <= 0)" << endl
<< " return vec3(0.0);" << endl
<< " vec3 H = normalize(wi + wo);" << endl
<< " vec3 specRef = " << depNames[0] << "(uv);" << endl
<< " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl
<< " float D = " << evalName << "_D(H)" << ";" << endl
<< " float G = " << evalName << "_G(H, wi, wo);" << endl
<< " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl
<< " return specRef * (F * D * G / (4*cosTheta(wi))) + " << endl
<< " diffuseRef * ((1-F) * cosTheta(wo) * 0.31831);" << endl
<< "}" << endl
<< endl
<< "vec3 " << evalName << "_diffuse(vec2 uv, vec3 wi, vec3 wo) {" << endl
<< " vec3 diffuseRef = " << depNames[1] << "(uv);" << endl
<< " return diffuseRef * 0.31831 * cosTheta(wo);"<< endl
<< "}" << endl;
}
MTS_DECLARE_CLASS()
private:
ref<const Texture> m_specularReflectance;
ref<const Texture> m_diffuseReflectance;
ref<Shader> m_specularReflectanceShader;
ref<Shader> m_diffuseReflectanceShader;
Float m_alpha, m_extIOR, m_intIOR, m_R0;
};
Shader *SmoothPlastic::createShader(Renderer *renderer) const {
return new SmoothPlasticShader(renderer,
m_specularReflectance.get(), m_diffuseReflectance.get(), m_extIOR, m_intIOR);
}
MTS_IMPLEMENT_CLASS(SmoothPlasticShader, false, Shader)
MTS_IMPLEMENT_CLASS_S(SmoothPlastic, false, BSDF)
MTS_EXPORT_PLUGIN(SmoothPlastic, "Smooth plastic BRDF");
MTS_NAMESPACE_END

View File

@ -30,6 +30,14 @@ MTS_NAMESPACE_BEGIN
* numerically or using a known material name. \default{\texttt{polypropylene} / 1.49}} * numerically or using a known material name. \default{\texttt{polypropylene} / 1.49}}
* \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified * \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified
* numerically or using a known material name. \default{\texttt{air} / 1.000277}} * numerically or using a known material name. \default{\texttt{air} / 1.000277}}
* \parameter{preserveColors}{\Boolean}{
* By default, this implementation accounts for light that undergoes any number
* of internal reflections from the dielectric material boundary before exiting, which
* potentially causes the diffuse component to shift towards more saturated colors.
* While realistic, this behavior might not always be desirable. In that case, set
* this parameter to \code{true}.
* \default{\code{false}}
* }
* \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional * \parameter{specular\showbreak Reflectance}{\Spectrum\Or\Texture}{Optional
* factor used to modulate the specular reflection component. Note that for physical * factor used to modulate the specular reflection component. Note that for physical
* realism, this parameter should never be touched. \default{1.0}} * realism, this parameter should never be touched. \default{1.0}}
@ -51,9 +59,9 @@ MTS_NAMESPACE_BEGIN
* numerically, or based on a list of known materials (see * numerically, or based on a list of known materials (see
* \tblref{dielectric-iors} for an overview). * \tblref{dielectric-iors} for an overview).
* *
* Since it is very simple and fast, this model is often a better choice * Since it is simple and fast, this model is often a better choice
* than the \pluginref{phong}, \pluginref{ward}, and \pluginref{roughplastic} * than the \pluginref{phong}, \pluginref{ward}, and \pluginref{roughplastic}
* plugins when rendering very smooth plastic-like materials. \vspace{4mm} * plugins when rendering smooth plastic-like materials. \vspace{4mm}
* *
* \begin{xml}[caption=A shiny material whose diffuse reflectance is * \begin{xml}[caption=A shiny material whose diffuse reflectance is
* specified using sRGB, label=lst:plastic-shiny] * specified using sRGB, label=lst:plastic-shiny]
@ -76,6 +84,9 @@ public:
props.getSpectrum("specularReflectance", Spectrum(1.0f))); props.getSpectrum("specularReflectance", Spectrum(1.0f)));
m_diffuseReflectance = new ConstantSpectrumTexture( m_diffuseReflectance = new ConstantSpectrumTexture(
props.getSpectrum("diffuseReflectance", Spectrum(0.5f))); props.getSpectrum("diffuseReflectance", Spectrum(0.5f)));
m_preserveColors = props.getBoolean("preserveColors", false);
m_specularSamplingWeight = 0.0f; m_specularSamplingWeight = 0.0f;
} }
@ -83,6 +94,7 @@ public:
: BSDF(stream, manager) { : BSDF(stream, manager) {
m_intIOR = stream->readFloat(); m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat(); m_extIOR = stream->readFloat();
m_preserveColors = stream->readBool();
m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream)); m_specularReflectance = static_cast<Texture *>(manager->getInstance(stream));
m_diffuseReflectance = static_cast<Texture *>(manager->getInstance(stream)); m_diffuseReflectance = static_cast<Texture *>(manager->getInstance(stream));
configure(); configure();
@ -95,10 +107,14 @@ public:
m_diffuseReflectance = ensureEnergyConservation( m_diffuseReflectance = ensureEnergyConservation(
m_diffuseReflectance, "diffuseReflectance", 1.0f); m_diffuseReflectance, "diffuseReflectance", 1.0f);
/* Numerically approximate the diffuse Fresnel reflectance */
m_fdr = fresnelDiffuseReflectance(m_extIOR / m_intIOR, false);
/* Compute weights that further steer samples towards /* Compute weights that further steer samples towards
the specular or diffuse components */ the specular or diffuse components */
Float dAvg = m_diffuseReflectance->getAverage().getLuminance(), Float dAvg = m_diffuseReflectance->getAverage().getLuminance(),
sAvg = m_specularReflectance->getAverage().getLuminance(); sAvg = m_specularReflectance->getAverage().getLuminance();
m_specularSamplingWeight = sAvg / (dAvg + sAvg); m_specularSamplingWeight = sAvg / (dAvg + sAvg);
m_usesRayDifferentials = m_usesRayDifferentials =
@ -124,6 +140,7 @@ public:
stream->writeFloat(m_intIOR); stream->writeFloat(m_intIOR);
stream->writeFloat(m_extIOR); stream->writeFloat(m_extIOR);
stream->writeBool(m_preserveColors);
manager->serialize(stream, m_specularReflectance.get()); manager->serialize(stream, m_specularReflectance.get());
manager->serialize(stream, m_diffuseReflectance.get()); manager->serialize(stream, m_diffuseReflectance.get());
} }
@ -164,9 +181,16 @@ public:
if (reflection) if (reflection)
return m_specularReflectance->getValue(bRec.its) * Fr; return m_specularReflectance->getValue(bRec.its) * Fr;
} else if (measure == ESolidAngle && hasDiffuse) { } else if (measure == ESolidAngle && hasDiffuse) {
if (hasDiffuse) Float Fr2 = fresnel(Frame::cosTheta(bRec.wo), m_extIOR, m_intIOR);
return m_diffuseReflectance->getValue(bRec.its)
* (INV_PI * Frame::cosTheta(bRec.wo) * (1-Fr)); if (hasDiffuse) {
Spectrum diff = m_diffuseReflectance->getValue(bRec.its);
if (m_preserveColors)
diff /= 1 - m_fdr;
else
diff /= Spectrum(1) - m_fdr*diff;
return diff * (INV_PI * Frame::cosTheta(bRec.wo) * (1-Fr) * (1-Fr2));
}
} }
return Spectrum(0.0f); return Spectrum(0.0f);
@ -232,9 +256,15 @@ public:
(sample.x - probSpecular) / (1 - probSpecular), (sample.x - probSpecular) / (1 - probSpecular),
sample.y sample.y
)); ));
Float Fr2 = fresnel(Frame::cosTheta(bRec.wo), m_extIOR, m_intIOR);
return m_diffuseReflectance->getValue(bRec.its) * Spectrum diff = m_diffuseReflectance->getValue(bRec.its);
((1-Fr) / (1-probSpecular)); if (m_preserveColors)
diff /= 1 - m_fdr;
else
diff /= Spectrum(1) - m_fdr*diff;
return diff * ((1-Fr) * (1-Fr2) / (1-probSpecular));
} }
} else if (hasSpecular) { } else if (hasSpecular) {
bRec.sampledComponent = 0; bRec.sampledComponent = 0;
@ -242,15 +272,19 @@ public:
bRec.wo = reflect(bRec.wi); bRec.wo = reflect(bRec.wi);
return m_specularReflectance->getValue(bRec.its) * Fr; return m_specularReflectance->getValue(bRec.its) * Fr;
} else { } else {
bRec.wo = squareToHemispherePSA(sample);
Float Fr2 = fresnel(Frame::cosTheta(bRec.wo), m_extIOR, m_intIOR);
bRec.sampledComponent = 1; bRec.sampledComponent = 1;
bRec.sampledType = EDiffuseReflection; bRec.sampledType = EDiffuseReflection;
if (Fr == 1.0f) /* Total internal reflection */ Spectrum diff = m_diffuseReflectance->getValue(bRec.its);
return Spectrum(0.0f); if (m_preserveColors)
diff /= 1 - m_fdr;
bRec.wo = squareToHemispherePSA(sample); else
diff /= Spectrum(1) - m_fdr*diff;
return m_diffuseReflectance->getValue(bRec.its) * (1-Fr);
return diff * (1-Fr) * (1-Fr2);
} }
} }
@ -285,10 +319,17 @@ public:
(sample.x - probSpecular) / (1 - probSpecular), (sample.x - probSpecular) / (1 - probSpecular),
sample.y sample.y
)); ));
Float Fr2 = fresnel(Frame::cosTheta(bRec.wo), m_extIOR, m_intIOR);
Spectrum diff = m_diffuseReflectance->getValue(bRec.its);
if (m_preserveColors)
diff /= 1 - m_fdr;
else
diff /= Spectrum(1) - m_fdr*diff;
pdf = (1-probSpecular) * Frame::cosTheta(bRec.wo) * INV_PI; pdf = (1-probSpecular) * Frame::cosTheta(bRec.wo) * INV_PI;
return m_diffuseReflectance->getValue(bRec.its) return diff * ((1-Fr) * (1-Fr2) / (1-probSpecular));
* (1-Fr) / (1-probSpecular);
} }
} else if (hasSpecular) { } else if (hasSpecular) {
bRec.sampledComponent = 0; bRec.sampledComponent = 0;
@ -299,6 +340,7 @@ public:
} else { } else {
bRec.sampledComponent = 1; bRec.sampledComponent = 1;
bRec.sampledType = EDiffuseReflection; bRec.sampledType = EDiffuseReflection;
Float Fr2 = fresnel(Frame::cosTheta(bRec.wo), m_extIOR, m_intIOR);
if (Fr == 1.0f) /* Total internal reflection */ if (Fr == 1.0f) /* Total internal reflection */
return Spectrum(0.0f); return Spectrum(0.0f);
@ -307,7 +349,13 @@ public:
pdf = Frame::cosTheta(bRec.wo) * INV_PI; pdf = Frame::cosTheta(bRec.wo) * INV_PI;
return m_diffuseReflectance->getValue(bRec.its) * (1-Fr); Spectrum diff = m_diffuseReflectance->getValue(bRec.its);
if (m_preserveColors)
diff /= 1 - m_fdr;
else
diff /= Spectrum(1) - m_fdr*diff;
return diff * (1-Fr) * (1-Fr2);
} }
} }
@ -321,18 +369,21 @@ public:
<< " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl << " diffuseReflectance = " << indent(m_diffuseReflectance->toString()) << "," << endl
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl << " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
<< " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl << " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl
<< " preserveColors = " << m_preserveColors << "," << endl
<< " intIOR = " << m_intIOR << "," << endl << " intIOR = " << m_intIOR << "," << endl
<< " extIOR = " << m_extIOR << endl << " extIOR = " << m_extIOR << "," << endl
<< " fdr = " << m_fdr << endl
<< "]"; << "]";
return oss.str(); return oss.str();
} }
MTS_DECLARE_CLASS() MTS_DECLARE_CLASS()
private: private:
Float m_intIOR, m_extIOR; Float m_intIOR, m_extIOR, m_fdr;
ref<Texture> m_diffuseReflectance; ref<Texture> m_diffuseReflectance;
ref<Texture> m_specularReflectance; ref<Texture> m_specularReflectance;
Float m_specularSamplingWeight; Float m_specularSamplingWeight;
bool m_preserveColors;
}; };
/** /**