metadata
Wenzel Jakob 2014-02-06 13:42:21 +01:00
commit 9b5f21a9cf
8 changed files with 602 additions and 68 deletions

View File

@ -585,6 +585,7 @@ class MitsubaRenderBuffer(RenderListener):
RENDERING_FINISHED = 0
RENDERING_CANCELLED = 1
RENDERING_UPDATED = 2
GEOMETRY_CHANGED = 3
def __init__(self, queue, callback):
super(MitsubaRenderBuffer, self).__init__()
@ -613,7 +614,7 @@ class MitsubaRenderBuffer(RenderListener):
do this occasionally). Hence, tonemap the full film. """
film = self._get_film_ensure_initialized(job)
film.develop(Point2i(0), self.size, Point2i(0), self.bitmap)
self._potentially_send_update(force=True)
self._potentially_send_update()
def finishJobEvent(self, job, cancelled):
""" Callback: the rendering job has finished or was cancelled.
@ -646,12 +647,14 @@ class MitsubaRenderBuffer(RenderListener):
# (i.e. without doing unnecessary bitmap copy operations)
self.qimage = QImage(self.bitmap.getNativeBuffer(), self.size.x,
self.size.y, QImage.Format_RGB888)
self.callback(MitsubaRenderBuffer.GEOMETRY_CHANGED)
return film
def _potentially_send_update(self, force = False):
def _potentially_send_update(self):
""" Send an update request to any attached widgets, but not too often """
now = time.time()
if now - self.time > .25 or force:
if now - self.time > .25:
self.time = now
self.callback(MitsubaRenderBuffer.RENDERING_UPDATED)
@ -660,20 +663,22 @@ class RenderWidget(QWidget):
and displays the progress of everything that's being rendered """
renderingUpdated = Signal(int)
def __init__(self, parent, queue):
def __init__(self, parent, queue, default_size = Vector2i(0, 0)):
QWidget.__init__(self, parent)
self.buffer = MitsubaRenderBuffer(queue, self.renderingUpdated.emit)
# Need a queued conn. to avoid threading issues between Qt and Mitsuba
self.renderingUpdated.connect(self._handle_update, Qt.QueuedConnection)
self.setSizePolicy(QSizePolicy.Minimum, QSizePolicy.Minimum)
self.default_size = default_size
def sizeHint(self):
return QSize(self.buffer.size.x, self.buffer.size.y)
size = self.buffer.size if not self.buffer.size.isZero() else self.default_size
return QSize(size.x, size.y)
def _handle_update(self, event):
image = self.buffer.qimage
# Detect when an image of different resolution is being rendered
if image.width() < self.width() or image.height() < self.height():
if image.width() > self.width() or image.height() > self.height():
self.updateGeometry()
self.repaint()
@ -702,10 +707,11 @@ class MitsubaDemo(QMainWindow):
# Initialize Mitsuba
self.initializeMitsuba()
self.job = self.createRenderJob()
self.job.setInteractive(True)
# Initialize the user interface
status = self.statusBar()
self.rwidget = RenderWidget(self, self.queue)
self.rwidget = RenderWidget(self, self.queue, self.scene.getFilm().getSize())
progress = QProgressBar(status)
status.setContentsMargins(0,0,5,0)
status.addPermanentWidget(progress)

View File

@ -92,6 +92,9 @@ public:
*/
inline bool isInteractive() const { return m_interactive; }
/// Define whether or not this is an interactive job
inline void setInteractive(bool interactive) { m_interactive = interactive; }
/// Get a pointer to the underlying scene
inline Scene *getScene() { return m_scene.get(); }

View File

@ -10,7 +10,7 @@ if filmEnv.has_key('OEXRFLAGS'):
if filmEnv.has_key('OEXRLIB'):
filmEnv.Prepend(LIBS=env['OEXRLIB'])
plugins += filmEnv.SharedLibrary('mfilm', ['mfilm.cpp'])
plugins += filmEnv.SharedLibrary('mfilm', ['mfilm.cpp', 'cnpy.cpp'])
plugins += filmEnv.SharedLibrary('ldrfilm', ['ldrfilm.cpp'])
plugins += filmEnv.SharedLibrary('hdrfilm', ['hdrfilm.cpp'])

246
src/films/cnpy.cpp Normal file
View File

@ -0,0 +1,246 @@
//Copyright (C) 2011 Carl Rogers
//Released under MIT License
//license available in LICENSE file, or at http://www.opensource.org/licenses/mit-license.php
#include"cnpy.h"
#include<complex>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<iomanip>
char cnpy::BigEndianTest() {
unsigned char x[] = {1,0};
short y = *(short*) x;
return y == 1 ? '<' : '>';
}
char cnpy::map_type(const std::type_info& t)
{
if(t == typeid(float) ) return 'f';
if(t == typeid(double) ) return 'f';
if(t == typeid(long double) ) return 'f';
if(t == typeid(int) ) return 'i';
if(t == typeid(char) ) return 'i';
if(t == typeid(short) ) return 'i';
if(t == typeid(long) ) return 'i';
if(t == typeid(long long) ) return 'i';
if(t == typeid(unsigned char) ) return 'u';
if(t == typeid(unsigned short) ) return 'u';
if(t == typeid(unsigned long) ) return 'u';
if(t == typeid(unsigned long long) ) return 'u';
if(t == typeid(unsigned int) ) return 'u';
if(t == typeid(bool) ) return 'b';
if(t == typeid(std::complex<float>) ) return 'c';
if(t == typeid(std::complex<double>) ) return 'c';
if(t == typeid(std::complex<long double>) ) return 'c';
else return '?';
}
template<> std::vector<char>& cnpy::operator+=(std::vector<char>& lhs, const std::string rhs) {
lhs.insert(lhs.end(),rhs.begin(),rhs.end());
return lhs;
}
template<> std::vector<char>& cnpy::operator+=(std::vector<char>& lhs, const char* rhs) {
//write in little endian
size_t len = strlen(rhs);
lhs.reserve(len);
for(size_t byte = 0; byte < len; byte++) {
lhs.push_back(rhs[byte]);
}
return lhs;
}
void cnpy::parse_npy_header(FILE* fp, unsigned int& word_size, unsigned int*& shape, unsigned int& ndims, bool& fortran_order) {
char buffer[256];
size_t res = fread(buffer,sizeof(char),11,fp);
if(res != 11)
throw std::runtime_error("parse_npy_header: failed fread");
std::string header = fgets(buffer,256,fp);
assert(header[header.size()-1] == '\n');
int loc1, loc2;
//fortran order
loc1 = header.find("fortran_order")+16;
fortran_order = (header.substr(loc1,5) == "True" ? true : false);
//shape
loc1 = header.find("(");
loc2 = header.find(")");
std::string str_shape = header.substr(loc1+1,loc2-loc1-1);
if(str_shape[str_shape.size()-1] == ',') ndims = 1;
else ndims = std::count(str_shape.begin(),str_shape.end(),',')+1;
shape = new unsigned int[ndims];
for(unsigned int i = 0;i < ndims;i++) {
loc1 = str_shape.find(",");
shape[i] = atoi(str_shape.substr(0,loc1).c_str());
str_shape = str_shape.substr(loc1+1);
}
//endian, word size, data type
//byte order code | stands for not applicable.
//not sure when this applies except for byte array
loc1 = header.find("descr")+9;
bool littleEndian = (header[loc1] == '<' || header[loc1] == '|' ? true : false);
assert(littleEndian);
//char type = header[loc1+1];
//assert(type == map_type(T));
std::string str_ws = header.substr(loc1+2);
loc2 = str_ws.find("'");
word_size = atoi(str_ws.substr(0,loc2).c_str());
}
void cnpy::parse_zip_footer(FILE* fp, unsigned short& nrecs, unsigned int& global_header_size, unsigned int& global_header_offset)
{
std::vector<char> footer(22);
fseek(fp,-22,SEEK_END);
size_t res = fread(&footer[0],sizeof(char),22,fp);
if(res != 22)
throw std::runtime_error("parse_zip_footer: failed fread");
unsigned short disk_no, disk_start, nrecs_on_disk, comment_len;
disk_no = *(unsigned short*) &footer[4];
disk_start = *(unsigned short*) &footer[6];
nrecs_on_disk = *(unsigned short*) &footer[8];
nrecs = *(unsigned short*) &footer[10];
global_header_size = *(unsigned int*) &footer[12];
global_header_offset = *(unsigned int*) &footer[16];
comment_len = *(unsigned short*) &footer[20];
assert(disk_no == 0);
assert(disk_start == 0);
assert(nrecs_on_disk == nrecs);
assert(comment_len == 0);
}
cnpy::NpyArray load_the_npy_file(FILE* fp) {
unsigned int* shape;
unsigned int ndims, word_size;
bool fortran_order;
cnpy::parse_npy_header(fp,word_size,shape,ndims,fortran_order);
unsigned long long size = 1; //long long so no overflow when multiplying by word_size
for(unsigned int i = 0;i < ndims;i++) size *= shape[i];
cnpy::NpyArray arr;
arr.word_size = word_size;
arr.shape = std::vector<unsigned int>(shape,shape+ndims);
arr.data = new char[size*word_size];
arr.fortran_order = fortran_order;
size_t nread = fread(arr.data,word_size,size,fp);
if(nread != size)
throw std::runtime_error("load_the_npy_file: failed fread");
return arr;
}
cnpy::npz_t cnpy::npz_load(std::string fname) {
FILE* fp = fopen(fname.c_str(),"rb");
if(!fp) printf("npz_load: Error! Unable to open file %s!\n",fname.c_str());
assert(fp);
cnpy::npz_t arrays;
while(1) {
std::vector<char> local_header(30);
size_t headerres = fread(&local_header[0],sizeof(char),30,fp);
if(headerres != 30)
throw std::runtime_error("npz_load: failed fread");
//if we've reached the global header, stop reading
if(local_header[2] != 0x03 || local_header[3] != 0x04) break;
//read in the variable name
unsigned short name_len = *(unsigned short*) &local_header[26];
std::string varname(name_len,' ');
size_t vname_res = fread(&varname[0],sizeof(char),name_len,fp);
if(vname_res != name_len)
throw std::runtime_error("npz_load: failed fread");
//erase the lagging .npy
varname.erase(varname.end()-4,varname.end());
//read in the extra field
unsigned short extra_field_len = *(unsigned short*) &local_header[28];
if(extra_field_len > 0) {
std::vector<char> buff(extra_field_len);
size_t efield_res = fread(&buff[0],sizeof(char),extra_field_len,fp);
if(efield_res != extra_field_len)
throw std::runtime_error("npz_load: failed fread");
}
arrays[varname] = load_the_npy_file(fp);
}
fclose(fp);
return arrays;
}
cnpy::NpyArray cnpy::npz_load(std::string fname, std::string varname) {
FILE* fp = fopen(fname.c_str(),"rb");
if(!fp) {
printf("npz_load: Error! Unable to open file %s!\n",fname.c_str());
abort();
}
while(1) {
std::vector<char> local_header(30);
size_t header_res = fread(&local_header[0],sizeof(char),30,fp);
if(header_res != 30)
throw std::runtime_error("npz_load: failed fread");
//if we've reached the global header, stop reading
if(local_header[2] != 0x03 || local_header[3] != 0x04) break;
//read in the variable name
unsigned short name_len = *(unsigned short*) &local_header[26];
std::string vname(name_len,' ');
size_t vname_res = fread(&vname[0],sizeof(char),name_len,fp);
if(vname_res != name_len)
throw std::runtime_error("npz_load: failed fread");
vname.erase(vname.end()-4,vname.end()); //erase the lagging .npy
//read in the extra field
unsigned short extra_field_len = *(unsigned short*) &local_header[28];
fseek(fp,extra_field_len,SEEK_CUR); //skip past the extra field
if(vname == varname) {
NpyArray array = load_the_npy_file(fp);
fclose(fp);
return array;
}
else {
//skip past the data
unsigned int size = *(unsigned int*) &local_header[22];
fseek(fp,size,SEEK_CUR);
}
}
fclose(fp);
printf("npz_load: Error! Variable name %s not found in %s!\n",varname.c_str(),fname.c_str());
abort();
}
cnpy::NpyArray cnpy::npy_load(std::string fname) {
FILE* fp = fopen(fname.c_str(), "rb");
if(!fp) {
printf("npy_load: Error! Unable to open file %s!\n",fname.c_str());
abort();
}
NpyArray arr = load_the_npy_file(fp);
fclose(fp);
return arr;
}

241
src/films/cnpy.h Normal file
View File

@ -0,0 +1,241 @@
//Copyright (C) 2011 Carl Rogers
//Released under MIT License
//license available in LICENSE file, or at http://www.opensource.org/licenses/mit-license.php
#ifndef LIBCNPY_H_
#define LIBCNPY_H_
#include<string>
#include<stdexcept>
#include<sstream>
#include<vector>
#include<cstdio>
#include<typeinfo>
#include<iostream>
#include<cassert>
#include<zlib.h>
#include<map>
namespace cnpy {
struct NpyArray {
char* data;
std::vector<unsigned int> shape;
unsigned int word_size;
bool fortran_order;
void destruct() {delete[] data;}
};
struct npz_t : public std::map<std::string, NpyArray>
{
void destruct()
{
npz_t::iterator it = this->begin();
for(; it != this->end(); ++it) (*it).second.destruct();
}
};
char BigEndianTest();
char map_type(const std::type_info& t);
template<typename T> std::vector<char> create_npy_header(const T* data, const unsigned int* shape, const unsigned int ndims);
void parse_npy_header(FILE* fp,unsigned int& word_size, unsigned int*& shape, unsigned int& ndims, bool& fortran_order);
void parse_zip_footer(FILE* fp, unsigned short& nrecs, unsigned int& global_header_size, unsigned int& global_header_offset);
npz_t npz_load(std::string fname);
NpyArray npz_load(std::string fname, std::string varname);
NpyArray npy_load(std::string fname);
template<typename T> std::vector<char>& operator+=(std::vector<char>& lhs, const T rhs) {
//write in little endian
for(char byte = 0; byte < sizeof(T); byte++) {
char val = *((char*)&rhs+byte);
lhs.push_back(val);
}
return lhs;
}
template<> std::vector<char>& operator+=(std::vector<char>& lhs, const std::string rhs);
template<> std::vector<char>& operator+=(std::vector<char>& lhs, const char* rhs);
template<typename T> std::string tostring(T i, int pad = 0, char padval = ' ') {
std::stringstream s;
s << i;
return s.str();
}
template<typename T> void npy_save(std::string fname, const T* data, const unsigned int* shape, const unsigned int ndims, std::string mode = "w") {
FILE* fp = NULL;
if(mode == "a") fp = fopen(fname.c_str(),"r+b");
if(fp) {
//file exists. we need to append to it. read the header, modify the array size
unsigned int word_size, tmp_dims;
unsigned int* tmp_shape = 0;
bool fortran_order;
parse_npy_header(fp,word_size,tmp_shape,tmp_dims,fortran_order);
assert(!fortran_order);
if(word_size != sizeof(T)) {
std::cout<<"libnpy error: "<<fname<<" has word size "<<word_size<<" but npy_save appending data sized "<<sizeof(T)<<"\n";
assert( word_size == sizeof(T) );
}
if(tmp_dims != ndims) {
std::cout<<"libnpy error: npy_save attempting to append misdimensioned data to "<<fname<<"\n";
assert(tmp_dims == ndims);
}
for(int i = 1; i < ndims; i++) {
if(shape[i] != tmp_shape[i]) {
std::cout<<"libnpy error: npy_save attempting to append misshaped data to "<<fname<<"\n";
assert(shape[i] == tmp_shape[i]);
}
}
tmp_shape[0] += shape[0];
fseek(fp,0,SEEK_SET);
std::vector<char> header = create_npy_header(data,tmp_shape,ndims);
fwrite(&header[0],sizeof(char),header.size(),fp);
fseek(fp,0,SEEK_END);
delete[] tmp_shape;
}
else {
fp = fopen(fname.c_str(),"wb");
std::vector<char> header = create_npy_header(data,shape,ndims);
fwrite(&header[0],sizeof(char),header.size(),fp);
}
unsigned int nels = 1;
for(int i = 0;i < ndims;i++) nels *= shape[i];
fwrite(data,sizeof(T),nels,fp);
fclose(fp);
}
template<typename T> void npz_save(std::string zipname, std::string fname, const T* data, const unsigned int* shape, const unsigned int ndims, std::string mode = "w")
{
//first, append a .npy to the fname
// fname += ".npy";
//now, on with the show
FILE* fp = NULL;
unsigned short nrecs = 0;
unsigned int global_header_offset = 0;
std::vector<char> global_header;
if(mode == "a") fp = fopen(zipname.c_str(),"r+b");
if(fp) {
//zip file exists. we need to add a new npy file to it.
//first read the footer. this gives us the offset and size of the global header
//then read and store the global header.
//below, we will write the the new data at the start of the global header then append the global header and footer below it
unsigned int global_header_size;
parse_zip_footer(fp,nrecs,global_header_size,global_header_offset);
fseek(fp,global_header_offset,SEEK_SET);
global_header.resize(global_header_size);
size_t res = fread(&global_header[0],sizeof(char),global_header_size,fp);
if(res != global_header_size){
throw std::runtime_error("npz_save: header read error while adding to existing zip");
}
fseek(fp,global_header_offset,SEEK_SET);
}
else {
fp = fopen(zipname.c_str(),"wb");
}
std::vector<char> npy_header = create_npy_header(data,shape,ndims);
unsigned long nels = 1;
for (int m=0; m<ndims; m++ ) nels *= shape[m];
int nbytes = nels*sizeof(T) + npy_header.size();
//get the CRC of the data to be added
unsigned int crc = crc32(0L,(unsigned char*)&npy_header[0],npy_header.size());
crc = crc32(crc,(unsigned char*)data,nels*sizeof(T));
//build the local header
std::vector<char> local_header;
local_header += "PK"; //first part of sig
local_header += (unsigned short) 0x0403; //second part of sig
local_header += (unsigned short) 20; //min version to extract
local_header += (unsigned short) 0; //general purpose bit flag
local_header += (unsigned short) 0; //compression method
local_header += (unsigned short) 0; //file last mod time
local_header += (unsigned short) 0; //file last mod date
local_header += (unsigned int) crc; //crc
local_header += (unsigned int) nbytes; //compressed size
local_header += (unsigned int) nbytes; //uncompressed size
local_header += (unsigned short) fname.size(); //fname length
local_header += (unsigned short) 0; //extra field length
local_header += fname;
//build global header
global_header += "PK"; //first part of sig
global_header += (unsigned short) 0x0201; //second part of sig
global_header += (unsigned short) 20; //version made by
global_header.insert(global_header.end(),local_header.begin()+4,local_header.begin()+30);
global_header += (unsigned short) 0; //file comment length
global_header += (unsigned short) 0; //disk number where file starts
global_header += (unsigned short) 0; //internal file attributes
global_header += (unsigned int) 0; //external file attributes
global_header += (unsigned int) global_header_offset; //relative offset of local file header, since it begins where the global header used to begin
global_header += fname;
//build footer
std::vector<char> footer;
footer += "PK"; //first part of sig
footer += (unsigned short) 0x0605; //second part of sig
footer += (unsigned short) 0; //number of this disk
footer += (unsigned short) 0; //disk where footer starts
footer += (unsigned short) (nrecs+1); //number of records on this disk
footer += (unsigned short) (nrecs+1); //total number of records
footer += (unsigned int) global_header.size(); //nbytes of global headers
footer += (unsigned int) (global_header_offset + nbytes + local_header.size()); //offset of start of global headers, since global header now starts after newly written array
footer += (unsigned short) 0; //zip file comment length
//write everything
fwrite(&local_header[0],sizeof(char),local_header.size(),fp);
fwrite(&npy_header[0],sizeof(char),npy_header.size(),fp);
fwrite(data,sizeof(T),nels,fp);
fwrite(&global_header[0],sizeof(char),global_header.size(),fp);
fwrite(&footer[0],sizeof(char),footer.size(),fp);
fclose(fp);
}
template<typename T> std::vector<char> create_npy_header(const T* data, const unsigned int* shape, const unsigned int ndims) {
std::vector<char> dict;
dict += "{'descr': '";
dict += BigEndianTest();
dict += map_type(typeid(T));
dict += tostring(sizeof(T));
dict += "', 'fortran_order': False, 'shape': (";
dict += tostring(shape[0]);
for(int i = 1;i < ndims;i++) {
dict += ", ";
dict += tostring(shape[i]);
}
if(ndims == 1) dict += ",";
dict += "), }";
//pad with spaces so that preamble+dict is modulo 16 bytes. preamble is 10 bytes. dict needs to end with \n
int remainder = 16 - (10 + dict.size()) % 16;
dict.insert(dict.end(),remainder,' ');
dict.back() = '\n';
std::vector<char> header;
header += (char) 0x93;
header += "NUMPY";
header += (char) 0x01; //major version of numpy format
header += (char) 0x00; //minor version of numpy format
header += (unsigned short) dict.size();
header.insert(header.end(),dict.begin(),dict.end());
return header;
}
}
#endif

View File

@ -22,10 +22,11 @@
#include <boost/algorithm/string.hpp>
#include <boost/filesystem/fstream.hpp>
#include <iomanip>
#include "cnpy.h"
MTS_NAMESPACE_BEGIN
/*!\plugin{mfilm}{MATLAB / Mathematica film}
/*!\plugin{mfilm}{MATLAB / Mathematica / NumPy film}
* \order{4}
* \parameters{
* \parameter{width, height}{\Integer}{
@ -39,7 +40,7 @@ MTS_NAMESPACE_BEGIN
* }
* \parameter{fileFormat}{\String}{
* Specifies the desired output format; must be one of
* \code{matlab} or \code{mathematica}. \default{\code{matlab}}
* \code{matlab}, \code{mathematica}, or \code{numpy}. \default{\code{matlab}}
* }
* \parameter{digits}{\Integer}{
* Number of significant digits to be written \default{4}
@ -72,8 +73,8 @@ MTS_NAMESPACE_BEGIN
* }
*
* This plugin provides a camera film that exports spectrum, RGB, XYZ, or
* luminance values as a matrix to a MATLAB or Mathematica ASCII file. This is
* useful when running Mitsuba as simulation step as part of a
* luminance values as a matrix to a MATLAB or Mathematica ASCII file or a NumPy binary file.
* This is useful when running Mitsuba as simulation step as part of a
* larger virtual experiment. It can also come in handy when
* verifying parts of the renderer using an automated test suite.
*/
@ -81,7 +82,8 @@ class MFilm : public Film {
public:
enum EMode {
EMATLAB = 0,
EMathematica
EMathematica,
ENumPy
};
MFilm(const Properties &props) : Film(props) {
@ -122,9 +124,11 @@ public:
m_fileFormat = EMATLAB;
} else if (fileFormat == "mathematica") {
m_fileFormat = EMathematica;
} else if (fileFormat == "numpy") {
m_fileFormat = ENumPy;
} else {
Log(EError, "The \"fileFormat\" parameter must either be equal to "
"\"matlab\" or \"mathematica\"!");
"\"matlab\" or \"mathematica\" or \"numpy\" or \"numpycompressed\"!");
}
m_digits = props.getInteger("digits", 4);
@ -246,14 +250,23 @@ public:
fs::path filename = m_destFile;
std::string extension = boost::to_lower_copy(filename.extension().string());
if (extension != ".m")
filename.replace_extension(".m");
std::string expectedExtension;
if (m_fileFormat == EMathematica || m_fileFormat == EMATLAB) {
expectedExtension = ".m";
} else if (m_fileFormat == ENumPy) {
expectedExtension = ".npy";
} else {
Log(EError, "Invalid file format!");
}
if (extension != expectedExtension)
filename.replace_extension(expectedExtension);
ref<Bitmap> bitmap = m_storage->getBitmap()->convert(
m_pixelFormat, Bitmap::EFloat);
Log(EInfo, "Writing image to \"%s\" ..", filename.filename().string().c_str());
if (m_fileFormat == EMathematica || m_fileFormat == EMATLAB) {
fs::ofstream os(filename);
if (!os.good() || os.fail())
Log(EError, "Output file cannot be created!");
@ -317,12 +330,34 @@ public:
}
}
}
} else {
unsigned int shape[] = {
bitmap->getHeight(),
bitmap->getWidth(),
bitmap->getChannelCount()
};
unsigned int N = 3, *shape_ptr = shape;
if (bitmap->getChannelCount() == 1)
N = 2;
const Float *data = bitmap->getFloatData();
cnpy::npy_save(filename.string(), data, shape_ptr, N, "w");
}
}
bool destinationExists(const fs::path &baseName) const {
fs::path filename = baseName;
if (boost::to_lower_copy(filename.extension().string()) != ".m")
filename.replace_extension(".m");
std::string expectedExtension;
if (m_fileFormat == EMathematica || m_fileFormat == EMATLAB) {
expectedExtension = ".m";
} else if (m_fileFormat == ENumPy) {
expectedExtension = ".npy";
} else {
Log(EError, "Invalid file format!");
}
if (boost::to_lower_copy(filename.extension().string()) != expectedExtension)
filename.replace_extension(expectedExtension);
return fs::exists(filename);
}
@ -359,5 +394,5 @@ protected:
};
MTS_IMPLEMENT_CLASS_S(MFilm, false, Film)
MTS_EXPORT_PLUGIN(MFilm, "MATLAB / Mathematica film");
MTS_EXPORT_PLUGIN(MFilm, "MATLAB / Mathematica / NumPy film");
MTS_NAMESPACE_END

View File

@ -70,6 +70,7 @@
.def(bp::self / Scalar()) \
.def(bp::self /= Scalar()) \
.def("serialize", &Name::serialize) \
.def("isZero", &Name::isZero) \
.def("length", &Name::length) \
.def("lengthSquared", &Name::lengthSquared) \
.def("__repr__", &Name::toString) \
@ -95,6 +96,7 @@
.def(bp::self / Scalar()) \
.def(bp::self /= Scalar()) \
.def("serialize", &Name::serialize) \
.def("isZero", &Name::isZero) \
.def("__repr__", &Name::toString) \
.def("__len__", &FixedSizeSupport<Name, Scalar, Size>::len) \
.def("__getitem__", &FixedSizeSupport<Name, Scalar, Size>::get) \

View File

@ -363,11 +363,12 @@ void export_render() {
Scene *(RenderJob::*renderJob_getScene)(void) = &RenderJob::getScene;
RenderQueue *(RenderJob::*renderJob_getRenderQueue)(void) = &RenderJob::getRenderQueue;
BP_CLASS(RenderJob, Thread, (bp::init<const std::string &, Scene *, RenderQueue *>()))
.def(bp::init<const std::string &, Scene *, RenderQueue *, int, bp::optional<int, int> >())
BP_CLASS(RenderJob, Thread, (bp::init<const std::string &, Scene *, RenderQueue *, bp::optional<int, int, int, bool, bool> >()))
.def("flush", &RenderJob::flush)
.def("cancel", renderJob_cancel)
.def("wait", &RenderJob::wait)
.def("isInteractive", &RenderJob::isInteractive)
.def("setInteractive", &RenderJob::setInteractive)
.def("getScene", renderJob_getScene, BP_RETURN_VALUE)
.def("getRenderQueue", renderJob_getRenderQueue, BP_RETURN_VALUE);