missed photon files

metadata
Wenzel Jakob 2011-03-14 14:58:58 +01:00
parent a8f5628aef
commit 852d232cae
2 changed files with 291 additions and 0 deletions

View File

@ -0,0 +1,179 @@
/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2010 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#if !defined(__PHOTON_H)
#define __PHOTON_H
#include <mitsuba/core/serialization.h>
#include <mitsuba/core/aabb.h>
MTS_NAMESPACE_BEGIN
/** \brief Memory-efficient photon representation
*
* Requires 24 bytes when Mitsuba is compiled with single precision
* and RGB-based color spectra.
*/
struct Photon {
friend class PhotonMap;
public:
// ======================================================================
/// @{ \name Photon attributes
// ======================================================================
float pos[3]; //!< Photon position in single precision
#if defined(DOUBLE_PRECISION) || SPECTRUM_SAMPLES > 3
Spectrum power; //!< Accurate spectral photon power representation
#else
uint8_t power[4]; //!< Photon power stored in Greg Ward's RGBE format
#endif
uint8_t theta; //!< Discretized photon direction (\a theta component)
uint8_t phi; //!< Discretized photon direction (\a phi component)
uint8_t thetaN; //!< Discretized surface normal (\a theta component)
uint8_t phiN; //!< Discretized surface normal (\a phi component)
uint16_t depth; //!< Photon depth (number of preceding interactions)
uint8_t axis; //!< Split axis in the associated KD-tree
uint8_t unused; //!< Unused 8-bit field (needed for alignment)
/// @}
// ======================================================================
/// Dummy constructor
inline Photon() { }
/// Construct from a photon interaction
Photon(const Point &pos, const Normal &normal,
const Vector &dir, const Spectrum &power,
uint16_t depth);
/// Unserialize from a binary data stream
Photon(Stream *stream);
/// @}
// ======================================================================
/// Return the depth (in # of interactions)
inline int getDepth() const {
return depth;
}
/// Compute the squared distance between this photon and some point.
inline float distSquared(const float *q) const {
float dist1 = pos[0]-q[0], dist2 = pos[1]-q[1],
dist3 = pos[2]-q[2];
return dist1*dist1 + dist2*dist2 + dist3*dist3;
}
/**
* Convert the photon direction from quantized spherical coordinates
* to a floating point vector value. Precomputation idea based on
* Jensen's implementation.
*/
inline Vector getDirection() const {
return Vector(
m_cosPhi[phi] * m_sinTheta[theta],
m_sinPhi[phi] * m_sinTheta[theta],
m_cosTheta[theta]
);
}
/**
* Convert the normal direction from quantized spherical coordinates
* to a floating point vector value.
*/
inline Normal getNormal() const {
return Normal(
m_cosPhi[phiN] * m_sinTheta[thetaN],
m_sinPhi[phiN] * m_sinTheta[thetaN],
m_cosTheta[thetaN]
);
}
/// Return the photon position as a vector
inline Point getPosition() const {
return Point(pos[0], pos[1], pos[2]);
}
/// Convert the photon power from RGBE to floating point
inline Spectrum getPower() const {
#if defined(DOUBLE_PRECISION) || SPECTRUM_SAMPLES > 3
return power;
#else
Spectrum result;
result.fromRGBE(power);
return result;
#endif
}
/// Serialize to a binary data stream
inline void serialize(Stream *stream) const {
stream->writeSingleArray(pos, 3);
#if defined(DOUBLE_PRECISION) || SPECTRUM_SAMPLES > 3
power.serialize(stream);
stream->writeUChar(phi);
stream->writeUChar(theta);
stream->writeUChar(phiN);
stream->writeUChar(thetaN);
#else
stream->write(power, 8);
#endif
stream->writeUShort(depth);
stream->writeUChar(axis);
}
/// Return a string representation (for debugging)
std::string toString() const {
std::ostringstream oss;
oss << "Photon[pos = [" << pos[0] << ", "
<< pos[1] << ", " << pos[2] << "]"
<< ", power = " << getPower().toString()
<< ", direction = " << getDirection().toString()
<< ", normal = " << getNormal().toString()
<< ", axis = " << axis
<< ", depth = " << depth
<< "]";
return oss.str();
}
protected:
// ======================================================================
/// @{ \name Precomputed lookup tables
// ======================================================================
static Float m_cosTheta[256];
static Float m_sinTheta[256];
static Float m_cosPhi[256];
static Float m_sinPhi[256];
static Float m_expTable[256];
static bool m_precompTableReady;
/// @}
// ======================================================================
/// Initialize the precomputed lookup tables
static bool createPrecompTables();
};
#if defined(SINGLE_PRECISION) && SPECTRUM_SAMPLES == 3
/* Compiler sanity check */
BOOST_STATIC_ASSERT(sizeof(Photon) == 24);
#endif
MTS_NAMESPACE_END
#endif /* __PHOTON_H */

112
src/librender/photon.cpp Normal file
View File

@ -0,0 +1,112 @@
/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2010 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/photon.h>
MTS_NAMESPACE_BEGIN
/* Precompute cosine/sine values for quick conversions
from quantized spherical coordinates to floating
point vectors. */
Float Photon::m_cosTheta[256];
Float Photon::m_sinTheta[256];
Float Photon::m_cosPhi[256];
Float Photon::m_sinPhi[256];
Float Photon::m_expTable[256];
bool Photon::m_precompTableReady = Photon::createPrecompTables();
bool Photon::createPrecompTables() {
for (int i=0; i<256; i++) {
Float angle = (Float) i * ((Float) M_PI / 256.0f);
m_cosPhi[i] = std::cos(2.0f * angle);
m_sinPhi[i] = std::sin(2.0f * angle);
m_cosTheta[i] = std::cos(angle);
m_sinTheta[i] = std::sin(angle);
m_expTable[i] = std::ldexp((Float) 1, i - (128+8));
}
m_expTable[0] = 0;
return true;
}
Photon::Photon(Stream *stream) {
stream->readSingleArray(pos, 3);
#if defined(DOUBLE_PRECISION) || SPECTRUM_SAMPLES > 3
power = Spectrum(stream);
phi = stream->readUChar();
theta = stream->readUChar();
phiN = stream->readUChar();
thetaN = stream->readUChar();
#else
stream->read(power, 8);
#endif
depth = stream->readUShort();
axis = stream->readUChar();
unused = 0;
}
Photon::Photon(const Point &p, const Normal &normal,
const Vector &dir, const Spectrum &P,
uint16_t _depth) {
if (P.isNaN())
SLog(EWarn, "Creating an invalid photon with power: %s", P.toString().c_str());
/* Possibly convert to single precision floating point
(if Mitsuba is configured to use double precision) */
pos[0] = (float) p.x;
pos[1] = (float) p.y;
pos[2] = (float) p.z;
depth = _depth;
unused = 0;
axis = -1;
/* Convert the direction into an approximate spherical
coordinate format to reduce storage requirements */
theta = (uint8_t) std::min(255,
(int) (std::acos(dir.z) * (256.0 / M_PI)));
int tmp = std::min(255,
(int) (std::atan2(dir.y, dir.x) * (256.0 / (2.0 * M_PI))));
if (tmp < 0)
phi = (uint8_t) (tmp + 256);
else
phi = (uint8_t) tmp;
if (normal.isZero()) {
thetaN = phiN = 0;
} else {
thetaN = (uint8_t) std::min(255,
(int) (std::acos(normal.z) * (256.0 / M_PI)));
tmp = std::min(255,
(int) (std::atan2(normal.y, normal.x) * (256.0 / (2.0 * M_PI))));
if (tmp < 0)
phiN = (uint8_t) (tmp + 256);
else
phiN = (uint8_t) tmp;
}
#if defined(DOUBLE_PRECISION) || SPECTRUM_SAMPLES > 3
power = P;
#else
/* Pack the photon power into Greg Ward's RGBE format */
P.toRGBE(power);
#endif
}
MTS_NAMESPACE_END