Nicer testcase framework, eigendecomposition support
parent
debd09e75f
commit
8486931b30
|
@ -431,7 +431,6 @@ if hasQt:
|
||||||
qtEnv = mainEnv.Clone()
|
qtEnv = mainEnv.Clone()
|
||||||
qtEnv.Append(CPPPATH=['src/qtgui'])
|
qtEnv.Append(CPPPATH=['src/qtgui'])
|
||||||
qtEnv.EnableQt4Modules(['QtGui', 'QtCore', 'QtOpenGL', 'QtXml', 'QtNetwork'])
|
qtEnv.EnableQt4Modules(['QtGui', 'QtCore', 'QtOpenGL', 'QtXml', 'QtNetwork'])
|
||||||
print(qtEnv.Dump())
|
|
||||||
if sys.platform == 'win32':
|
if sys.platform == 'win32':
|
||||||
index = qtEnv['CXXFLAGS'].index('_CONSOLE')
|
index = qtEnv['CXXFLAGS'].index('_CONSOLE')
|
||||||
del qtEnv['CXXFLAGS'][index-1]
|
del qtEnv['CXXFLAGS'][index-1]
|
||||||
|
@ -615,9 +614,11 @@ plugins += env.SharedLibrary('plugins/vpl', ['src/integrators/vpl/vpl.cpp'])
|
||||||
#])
|
#])
|
||||||
|
|
||||||
# Testcases
|
# Testcases
|
||||||
|
testEnv = env.Clone()
|
||||||
|
testEnv.Append(CPPDEFINES = [['MTS_TESTCASE', '1']])
|
||||||
for plugin in glob.glob('src/tests/test_*.cpp'):
|
for plugin in glob.glob('src/tests/test_*.cpp'):
|
||||||
name = os.path.basename(plugin)
|
name = os.path.basename(plugin)
|
||||||
plugins += env.SharedLibrary('plugins/' + name[0:len(name)-4], plugin)
|
plugins += testEnv.SharedLibrary('plugins/' + name[0:len(name)-4], plugin)
|
||||||
|
|
||||||
installTargets = []
|
installTargets = []
|
||||||
|
|
||||||
|
|
|
@ -53,6 +53,9 @@ public:
|
||||||
/// Return the determinant of the upper left 3x3 sub-matrix
|
/// Return the determinant of the upper left 3x3 sub-matrix
|
||||||
Float det3x3() const;
|
Float det3x3() const;
|
||||||
|
|
||||||
|
/// Perform a symmetric 4x4 eigendecomposition into Q and D.
|
||||||
|
void symmEigenDecomp(Matrix4x4 *Q, Vector4 &d);
|
||||||
|
|
||||||
/// Return the inverse of this matrix
|
/// Return the inverse of this matrix
|
||||||
ref<Matrix4x4> inverse() const;
|
ref<Matrix4x4> inverse() const;
|
||||||
|
|
||||||
|
|
|
@ -23,6 +23,16 @@
|
||||||
|
|
||||||
MTS_NAMESPACE_BEGIN
|
MTS_NAMESPACE_BEGIN
|
||||||
|
|
||||||
|
#if defined(MTS_TESTCASE)
|
||||||
|
/**
|
||||||
|
* When a testcase is being compiled, define the following preprocessor macros for convenience
|
||||||
|
*/
|
||||||
|
#define assertEquals(expected, actual) assertEqualsImpl(expected, actual, Epsilon, __FILE__, __LINE__)
|
||||||
|
#define assertEqualsEpsilon(expected, actual, epsilon) assertEqualsImpl(expected, actual, epsilon, __FILE__, __LINE__)
|
||||||
|
#define assertTrue(expr) assertTrueImpl(expr, #expr, __FILE__, __LINE__)
|
||||||
|
#define assertFalse(expr) assertFalseImpl(expr, #expr, __FILE__, __LINE__)
|
||||||
|
#endif
|
||||||
|
|
||||||
/** \brief Base class of all testcases. Implementations of this
|
/** \brief Base class of all testcases. Implementations of this
|
||||||
* interface can be executed using the 'mtsutil' command. The execution
|
* interface can be executed using the 'mtsutil' command. The execution
|
||||||
* order is as follows: after initializaiton using init(), any tests
|
* order is as follows: after initializaiton using init(), any tests
|
||||||
|
@ -54,6 +64,36 @@ public:
|
||||||
protected:
|
protected:
|
||||||
/// Virtual destructor
|
/// Virtual destructor
|
||||||
virtual ~TestCase() { }
|
virtual ~TestCase() { }
|
||||||
|
|
||||||
|
/// Asserts that the two integer values are equal
|
||||||
|
void assertEqualsImpl(int expected, int actual, const char *file, int line);
|
||||||
|
|
||||||
|
/// Asserts that the two floating point values are equal
|
||||||
|
void assertEqualsImpl(Float expected, Float actual, Float epsilon, const char *file, int line);
|
||||||
|
|
||||||
|
/// Asserts that the two 2D vectors are equal
|
||||||
|
void assertEqualsImpl(const Vector2 &expected, const Vector2 &actual, Float epsilon, const char *file, int line);
|
||||||
|
|
||||||
|
/// Asserts that the two 3D vectors are equal
|
||||||
|
void assertEqualsImpl(const Vector &expected, const Vector &actual, Float epsilon, const char *file, int line);
|
||||||
|
|
||||||
|
/// Asserts that the two 4D vectors are equal
|
||||||
|
void assertEqualsImpl(const Vector4 &expected, const Vector4 &actual, Float epsilon, const char *file, int line);
|
||||||
|
|
||||||
|
/// Asserts that the two 2D points are equal
|
||||||
|
void assertEqualsImpl(const Point2 &expected, const Point2 &actual, Float epsilon, const char *file, int line);
|
||||||
|
|
||||||
|
/// Asserts that the two 3D points are equal
|
||||||
|
void assertEqualsImpl(const Point &expected, const Point &actual, Float epsilon, const char *file, int line);
|
||||||
|
|
||||||
|
/// Asserts that the two 4x4 matrices are equal
|
||||||
|
void assertEqualsImpl(const Matrix4x4 *expected, const Matrix4x4 *actual, Float epsilon, const char *file, int line);
|
||||||
|
|
||||||
|
/// Asserts that a condition is true
|
||||||
|
void assertTrueImpl(bool condition, const char *expr, const char *file, int line);
|
||||||
|
|
||||||
|
/// Asserts that a condition is false
|
||||||
|
void assertFalseImpl(bool condition, const char *expr, const char *file, int line);
|
||||||
protected:
|
protected:
|
||||||
int m_executed, m_succeeded;
|
int m_executed, m_succeeded;
|
||||||
};
|
};
|
||||||
|
|
|
@ -135,7 +135,6 @@ Transform Transform::perspective(Float fov, Float clipNear, Float clipFar) {
|
||||||
|
|
||||||
/* Perform a scale so that the field of view is mapped
|
/* Perform a scale so that the field of view is mapped
|
||||||
* to the interval [-1, 1] */
|
* to the interval [-1, 1] */
|
||||||
|
|
||||||
Float cot = 1.0f / std::tan(degToRad(fov / 2.0f));
|
Float cot = 1.0f / std::tan(degToRad(fov / 2.0f));
|
||||||
|
|
||||||
return Transform::scale(Vector(cot, cot, 1.0f)) * Transform(trafo);
|
return Transform::scale(Vector(cot, cot, 1.0f)) * Transform(trafo);
|
||||||
|
@ -350,7 +349,249 @@ void Matrix4x4::serialize(Stream *stream) const {
|
||||||
stream->writeFloatArray(&m[0][0], 16);
|
stream->writeFloatArray(&m[0][0], 16);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void tred2(Float V[4][4], Float d[4], Float e[4]);
|
||||||
|
static void tql2(Float V[4][4], Float d[4], Float e[4]);
|
||||||
|
|
||||||
|
void Matrix4x4::symmEigenDecomp(Matrix4x4 *Q, Vector4 &d) {
|
||||||
|
Float e[4];
|
||||||
|
*Q = *this;
|
||||||
|
tred2(Q->m, (Float *) &d, e);
|
||||||
|
tql2(Q->m, (Float *) &d, e);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Eigendecomposition code for symmetric 3x3 matrices
|
||||||
|
Copied from the public domain Java Matrix library JAMA. */
|
||||||
|
|
||||||
|
inline Float hypot2(Float x, Float y){
|
||||||
|
return std::sqrt(x * x + y * y);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Symmetric Householder reduction to tridiagonal form.
|
||||||
|
static void tred2(Float V[4][4], Float d[4], Float e[4]) {
|
||||||
|
// This is derived from the Algol procedures tred2 by
|
||||||
|
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
||||||
|
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
||||||
|
// Fortran subroutine in EISPACK.
|
||||||
|
|
||||||
|
const int n = 4;
|
||||||
|
for (int j = 0; j < n; j++)
|
||||||
|
d[j] = V[n - 1][j];
|
||||||
|
|
||||||
|
// Householder reduction to tridiagonal form.
|
||||||
|
for (int i = n - 1; i > 0; i--) {
|
||||||
|
// Scale to avoid under/overflow.
|
||||||
|
Float scale = 0.0f, h = 0.0f;
|
||||||
|
|
||||||
|
for (int k = 0; k < i; k++)
|
||||||
|
scale = scale + std::abs(d[k]);
|
||||||
|
|
||||||
|
if (scale == 0.0f) {
|
||||||
|
e[i] = d[i - 1];
|
||||||
|
for (int j = 0; j < i; j++) {
|
||||||
|
d[j] = V[i - 1][j];
|
||||||
|
V[i][j] = 0.0f;
|
||||||
|
V[j][i] = 0.0f;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// Generate Householder vector.
|
||||||
|
|
||||||
|
for (int k = 0; k < i; k++) {
|
||||||
|
d[k] /= scale;
|
||||||
|
h += d[k] * d[k];
|
||||||
|
}
|
||||||
|
Float f = d[i - 1],
|
||||||
|
g = std::sqrt(h);
|
||||||
|
|
||||||
|
if (f > 0)
|
||||||
|
g = -g;
|
||||||
|
e[i] = scale * g;
|
||||||
|
h = h - f * g;
|
||||||
|
d[i - 1] = f - g;
|
||||||
|
|
||||||
|
for (int j = 0; j < i; j++)
|
||||||
|
e[j] = 0.0f;
|
||||||
|
|
||||||
|
// Apply similarity transformation to remaining columns.
|
||||||
|
for (int j = 0; j < i; j++) {
|
||||||
|
f = d[j];
|
||||||
|
V[j][i] = f;
|
||||||
|
g = e[j] + V[j][j] * f;
|
||||||
|
for (int k = j + 1; k <= i - 1; k++) {
|
||||||
|
g += V[k][j] * d[k];
|
||||||
|
e[k] += V[k][j] * f;
|
||||||
|
}
|
||||||
|
e[j] = g;
|
||||||
|
}
|
||||||
|
|
||||||
|
f = 0.0f;
|
||||||
|
for (int j = 0; j < i; j++) {
|
||||||
|
e[j] /= h;
|
||||||
|
f += e[j] * d[j];
|
||||||
|
}
|
||||||
|
Float hh = f / (h + h);
|
||||||
|
|
||||||
|
for (int j = 0; j < i; j++)
|
||||||
|
e[j] -= hh * d[j];
|
||||||
|
for (int j = 0; j < i; j++) {
|
||||||
|
f = d[j];
|
||||||
|
g = e[j];
|
||||||
|
for (int k = j; k <= i - 1; k++)
|
||||||
|
V[k][j] -= (f * e[k] + g * d[k]);
|
||||||
|
d[j] = V[i - 1][j];
|
||||||
|
V[i][j] = 0.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
d[i] = h;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Accumulate transformations.
|
||||||
|
for (int i = 0; i < n - 1; i++) {
|
||||||
|
V[n - 1][i] = V[i][i];
|
||||||
|
V[i][i] = 1.0f;
|
||||||
|
Float h = d[i + 1];
|
||||||
|
|
||||||
|
if (h != 0.0f) {
|
||||||
|
for (int k = 0; k <= i; k++)
|
||||||
|
d[k] = V[k][i + 1] / h;
|
||||||
|
for (int j = 0; j <= i; j++) {
|
||||||
|
Float g = 0.0f;
|
||||||
|
|
||||||
|
for (int k = 0; k <= i; k++)
|
||||||
|
g += V[k][i + 1] * V[k][j];
|
||||||
|
for (int k = 0; k <= i; k++)
|
||||||
|
V[k][j] -= g * d[k];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (int k = 0; k <= i; k++)
|
||||||
|
V[k][i + 1] = 0.0f;
|
||||||
|
}
|
||||||
|
for (int j = 0; j < n; j++) {
|
||||||
|
d[j] = V[n - 1][j];
|
||||||
|
V[n - 1][j] = 0.0f;
|
||||||
|
}
|
||||||
|
V[n - 1][n - 1] = 1.0f;
|
||||||
|
e[0] = 0.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Symmetric tridiagonal QL algorithm.
|
||||||
|
static void tql2(Float V[4][4], Float d[4], Float e[4]) {
|
||||||
|
// This is derived from the Algol procedures tql2, by
|
||||||
|
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
||||||
|
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
||||||
|
// Fortran subroutine in EISPACK.
|
||||||
|
|
||||||
|
const int n = 4;
|
||||||
|
|
||||||
|
for (int i = 1; i < n; i++)
|
||||||
|
e[i - 1] = e[i];
|
||||||
|
|
||||||
|
e[n - 1] = 0.0f;
|
||||||
|
Float f = 0.0f, tst1 = 0.0f;
|
||||||
|
|
||||||
|
#if defined(SINGLE_PRECISION)
|
||||||
|
Float eps = pow(2.0f, -23.0f);
|
||||||
|
#else
|
||||||
|
Float eps = pow(2.0, -52.0);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (int l = 0; l < n; l++) {
|
||||||
|
// Find small subdiagonal element
|
||||||
|
tst1 = std::max(tst1, std::abs(d[l]) + std::abs(e[l]));
|
||||||
|
int m = l;
|
||||||
|
|
||||||
|
while (m < n) {
|
||||||
|
if (std::abs(e[m]) <= eps * tst1)
|
||||||
|
break;
|
||||||
|
m++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If m == l, d[l] is an eigenvalue,
|
||||||
|
// otherwise, iterate.
|
||||||
|
if (m > l) {
|
||||||
|
int iter = 0;
|
||||||
|
|
||||||
|
do {
|
||||||
|
iter = iter + 1; // (Could check iteration count here.)
|
||||||
|
|
||||||
|
// Compute implicit shift
|
||||||
|
Float g = d[l];
|
||||||
|
Float p = (d[l + 1] - g) / (2.0f * e[l]);
|
||||||
|
Float r = hypot2(p, 1.0f);
|
||||||
|
|
||||||
|
if (p < 0)
|
||||||
|
r = -r;
|
||||||
|
d[l] = e[l] / (p + r);
|
||||||
|
d[l + 1] = e[l] * (p + r);
|
||||||
|
Float dl1 = d[l + 1];
|
||||||
|
|
||||||
|
Float h = g - d[l];
|
||||||
|
|
||||||
|
for (int i = l + 2; i < n; i++)
|
||||||
|
d[i] -= h;
|
||||||
|
f = f + h;
|
||||||
|
|
||||||
|
// Implicit QL transformation.
|
||||||
|
p = d[m];
|
||||||
|
Float c = 1.0f;
|
||||||
|
Float c2 = c, c3 = c;
|
||||||
|
Float el1 = e[l + 1];
|
||||||
|
Float s = 0.0f, s2 = 0.0f;
|
||||||
|
|
||||||
|
for (int i = m - 1; i >= l; i--) {
|
||||||
|
c3 = c2;
|
||||||
|
c2 = c;
|
||||||
|
s2 = s;
|
||||||
|
g = c * e[i];
|
||||||
|
h = c * p;
|
||||||
|
r = hypot2(p, e[i]);
|
||||||
|
e[i + 1] = s * r;
|
||||||
|
s = e[i] / r;
|
||||||
|
c = p / r;
|
||||||
|
p = c * d[i] - s * g;
|
||||||
|
d[i + 1] = h + s * (c * g + s * d[i]);
|
||||||
|
|
||||||
|
// Accumulate transformation.
|
||||||
|
for (int k = 0; k < n; k++) {
|
||||||
|
h = V[k][i + 1];
|
||||||
|
V[k][i + 1] =
|
||||||
|
s * V[k][i] + c * h;
|
||||||
|
V[k][i] = c * V[k][i] - s * h;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
p = -s * s2 * c3 * el1 * e[l] / dl1;
|
||||||
|
e[l] = s * p;
|
||||||
|
d[l] = c * p;
|
||||||
|
// Check for convergence.
|
||||||
|
} while (std::abs(e[l]) > eps * tst1);
|
||||||
|
}
|
||||||
|
d[l] = d[l] + f;
|
||||||
|
e[l] = 0.0f;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sort eigenvalues and corresponding vectors.
|
||||||
|
for (int i = 0; i < n - 1; i++) {
|
||||||
|
int k = i;
|
||||||
|
|
||||||
|
Float p = d[i];
|
||||||
|
|
||||||
|
for (int j = i + 1; j < n; j++) {
|
||||||
|
if (d[j] < p) {
|
||||||
|
k = j;
|
||||||
|
p = d[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (k != i) {
|
||||||
|
d[k] = d[i];
|
||||||
|
d[i] = p;
|
||||||
|
for (int j = 0; j < n; j++) {
|
||||||
|
p = V[j][i];
|
||||||
|
V[j][i] = V[j][k];
|
||||||
|
V[j][k] = p;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
MTS_IMPLEMENT_CLASS(Matrix4x4, false, Object)
|
MTS_IMPLEMENT_CLASS(Matrix4x4, false, Object)
|
||||||
MTS_NAMESPACE_END
|
MTS_NAMESPACE_END
|
||||||
|
|
|
@ -26,6 +26,89 @@ MTS_NAMESPACE_BEGIN
|
||||||
void TestCase::init() { }
|
void TestCase::init() { }
|
||||||
void TestCase::shutdown() { }
|
void TestCase::shutdown() { }
|
||||||
|
|
||||||
|
void TestCase::assertTrueImpl(bool value, const char *expr, const char *file, int line) {
|
||||||
|
if (!value)
|
||||||
|
Thread::getThread()->getLogger()->log(EError, NULL, file, line, "Assertion '%s == true' failed!", expr);
|
||||||
|
}
|
||||||
|
|
||||||
|
void TestCase::assertFalseImpl(bool value, const char *expr, const char *file, int line) {
|
||||||
|
if (value)
|
||||||
|
Thread::getThread()->getLogger()->log(EError, NULL, file, line, "Assertion '%s == false' failed!", expr);
|
||||||
|
}
|
||||||
|
|
||||||
|
void TestCase::assertEqualsImpl(int expected, int actual, const char *file, int line) {
|
||||||
|
if (expected != actual)
|
||||||
|
Thread::getThread()->getLogger()->log(EError, NULL, file, line, "Assertion failure: "
|
||||||
|
"expected integer value %i, got %i.", expected, actual);
|
||||||
|
}
|
||||||
|
|
||||||
|
void TestCase::assertEqualsImpl(Float expected, Float actual, Float epsilon, const char *file, int line) {
|
||||||
|
if (std::abs(expected-actual) > epsilon)
|
||||||
|
Thread::getThread()->getLogger()->log(EError, NULL, file, line, "Assertion failure: "
|
||||||
|
"expected floating point value %f, got %f.", expected, actual);
|
||||||
|
}
|
||||||
|
|
||||||
|
void TestCase::assertEqualsImpl(const Vector2 &expected, const Vector2 &actual, Float epsilon, const char *file, int line) {
|
||||||
|
bool match = true;
|
||||||
|
for (int i=0; i<2; ++i)
|
||||||
|
if (std::abs(expected[i]-actual[i]) > epsilon)
|
||||||
|
match = false;
|
||||||
|
if (!match)
|
||||||
|
Thread::getThread()->getLogger()->log(EError, NULL, file, line, "Assertion failure: "
|
||||||
|
"expected vector %s, got %s.", expected.toString().c_str(), actual.toString().c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
void TestCase::assertEqualsImpl(const Point2 &expected, const Point2 &actual, Float epsilon, const char *file, int line) {
|
||||||
|
bool match = true;
|
||||||
|
for (int i=0; i<2; ++i)
|
||||||
|
if (std::abs(expected[i]-actual[i]) > epsilon)
|
||||||
|
match = false;
|
||||||
|
if (!match)
|
||||||
|
Thread::getThread()->getLogger()->log(EError, NULL, file, line, "Assertion failure: "
|
||||||
|
"expected point %s, got %s.", expected.toString().c_str(), actual.toString().c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
void TestCase::assertEqualsImpl(const Vector &expected, const Vector &actual, Float epsilon, const char *file, int line) {
|
||||||
|
bool match = true;
|
||||||
|
for (int i=0; i<3; ++i)
|
||||||
|
if (std::abs(expected[i]-actual[i]) > epsilon)
|
||||||
|
match = false;
|
||||||
|
if (!match)
|
||||||
|
Thread::getThread()->getLogger()->log(EError, NULL, file, line, "Assertion failure: "
|
||||||
|
"expected vector %s, got %s.", expected.toString().c_str(), actual.toString().c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
void TestCase::assertEqualsImpl(const Point &expected, const Point &actual, Float epsilon, const char *file, int line) {
|
||||||
|
bool match = true;
|
||||||
|
for (int i=0; i<3; ++i)
|
||||||
|
if (std::abs(expected[i]-actual[i]) > epsilon)
|
||||||
|
match = false;
|
||||||
|
if (!match)
|
||||||
|
Thread::getThread()->getLogger()->log(EError, NULL, file, line, "Assertion failure: "
|
||||||
|
"expected point %s, got %s.", expected.toString().c_str(), actual.toString().c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
void TestCase::assertEqualsImpl(const Vector4 &expected, const Vector4 &actual, Float epsilon, const char *file, int line) {
|
||||||
|
bool match = true;
|
||||||
|
for (int i=0; i<4; ++i)
|
||||||
|
if (std::abs(expected[i]-actual[i]) > epsilon)
|
||||||
|
match = false;
|
||||||
|
if (!match)
|
||||||
|
Thread::getThread()->getLogger()->log(EError, NULL, file, line, "Assertion failure: "
|
||||||
|
"expected vector %s, got %s.", expected.toString().c_str(), actual.toString().c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
void TestCase::assertEqualsImpl(const Matrix4x4 *expected, const Matrix4x4 *actual, Float epsilon, const char *file, int line) {
|
||||||
|
bool match = true;
|
||||||
|
for (int i=0; i<4; ++i)
|
||||||
|
for (int j=0; j<4; ++j)
|
||||||
|
if (std::abs(expected->m[i][j]-actual->m[i][j]) > epsilon)
|
||||||
|
match = false;
|
||||||
|
if (!match)
|
||||||
|
Thread::getThread()->getLogger()->log(EError, NULL, file, line, "Assertion failure: "
|
||||||
|
"expected matrix %s, got %s.", expected->toString().c_str(), actual->toString().c_str());
|
||||||
|
}
|
||||||
|
|
||||||
struct Sample {
|
struct Sample {
|
||||||
Float value;
|
Float value;
|
||||||
Float variance;
|
Float variance;
|
||||||
|
|
|
@ -0,0 +1,56 @@
|
||||||
|
/*
|
||||||
|
This file is part of Mitsuba, a physically based rendering system.
|
||||||
|
|
||||||
|
Copyright (c) 2007-2010 by Wenzel Jakob and others.
|
||||||
|
|
||||||
|
Mitsuba is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License Version 3
|
||||||
|
as published by the Free Software Foundation.
|
||||||
|
|
||||||
|
Mitsuba is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <mitsuba/render/testcase.h>
|
||||||
|
|
||||||
|
MTS_NAMESPACE_BEGIN
|
||||||
|
|
||||||
|
class TestLinearAlgebra : public TestCase {
|
||||||
|
public:
|
||||||
|
MTS_BEGIN_TESTCASE()
|
||||||
|
MTS_DECLARE_TEST(test01_eigenDecomp)
|
||||||
|
MTS_END_TESTCASE()
|
||||||
|
|
||||||
|
void test01_eigenDecomp() {
|
||||||
|
ref<Matrix4x4> A = new Matrix4x4(
|
||||||
|
1.4541, 1.1233, 1.2407, 1.2548,
|
||||||
|
1.1233, 0.2597, 0.3819, 1.3917,
|
||||||
|
1.2407, 0.3819, 1.1552, 1.1048,
|
||||||
|
1.2548, 1.3917, 1.1048, 1.4712
|
||||||
|
);
|
||||||
|
ref<Matrix4x4> Q = new Matrix4x4();
|
||||||
|
Vector4 d;
|
||||||
|
A->symmEigenDecomp(Q, d);
|
||||||
|
|
||||||
|
Vector4 refD(-0.823889076095475, 0.130902702868822,
|
||||||
|
0.557486242256414, 4.47570013097024);
|
||||||
|
|
||||||
|
ref<Matrix4x4> refQ = new Matrix4x4(
|
||||||
|
0.294383137629217, 0.746207030711883, 0.191065628242818, 0.565692108217809,
|
||||||
|
-0.789565156329591, 0.139585328270248, -0.459560990857043, 0.381977087957391,
|
||||||
|
-0.286639718342894, -0.415237779451033, 0.738328701906588, 0.447533223711729,
|
||||||
|
0.455810381691897, -0.501266984714151, -0.45515749947419, 0.577754235510108
|
||||||
|
);
|
||||||
|
|
||||||
|
assertEqualsEpsilon(d, refD, 1e-6);
|
||||||
|
assertEqualsEpsilon(Q, refQ, 1e-6);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
MTS_EXPORT_TESTCASE(TestLinearAlgebra, "Testcase for Linear Algebra routines")
|
||||||
|
MTS_NAMESPACE_END
|
|
@ -46,7 +46,7 @@ public:
|
||||||
sampler->generate();
|
sampler->generate();
|
||||||
for (int i=0; i<5; ++i) {
|
for (int i=0; i<5; ++i) {
|
||||||
for (int j=0; j<5; ++j)
|
for (int j=0; j<5; ++j)
|
||||||
Assert(std::abs(sampler->next1D() - comparison[pos++]) < 1e-7);
|
assertEqualsEpsilon(sampler->next1D(), comparison[pos++], 1e-7);
|
||||||
sampler->advance();
|
sampler->advance();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -70,7 +70,7 @@ public:
|
||||||
sampler->generate();
|
sampler->generate();
|
||||||
for (int i=0; i<5; ++i) {
|
for (int i=0; i<5; ++i) {
|
||||||
for (int j=0; j<6; ++j)
|
for (int j=0; j<6; ++j)
|
||||||
Assert(std::abs(sampler->next1D() - comparison[pos++]) < 1e-7);
|
assertEqualsEpsilon(sampler->next1D(), comparison[pos++], 1e-7);
|
||||||
sampler->advance();
|
sampler->advance();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -79,7 +79,7 @@ public:
|
||||||
Float x = 0.0f;
|
Float x = 0.0f;
|
||||||
|
|
||||||
for (int i=0; i<20; ++i) {
|
for (int i=0; i<20; ++i) {
|
||||||
Assert(x == radicalInverse(2, i));
|
assertEqualsEpsilon(x, radicalInverse(2, i), 0);
|
||||||
x = radicalInverseIncremental(2, x);
|
x = radicalInverseIncremental(2, x);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -56,7 +56,7 @@ public:
|
||||||
|
|
||||||
Float value1 = vec1.eval(dir2);
|
Float value1 = vec1.eval(dir2);
|
||||||
Float value2 = vec2.eval(dir1);
|
Float value2 = vec2.eval(dir1);
|
||||||
Assert(std::abs(value1-value2) < Epsilon);
|
assertEquals(value1, value2);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -91,10 +91,10 @@ public:
|
||||||
Float relerr = std::abs(pdf1-pdf2)/pdf2;
|
Float relerr = std::abs(pdf1-pdf2)/pdf2;
|
||||||
if (pdf2 > 0.01) {
|
if (pdf2 > 0.01) {
|
||||||
accum += relerr; ++nInAvg;
|
accum += relerr; ++nInAvg;
|
||||||
Assert(relerr < 0.08);
|
assertTrue(relerr < 0.08);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Assert(accum / nInAvg < 0.01);
|
assertTrue(accum / nInAvg < 0.01);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue