efficient storage for classification results
parent
2b997ebf42
commit
8102eb91d3
|
@ -163,6 +163,51 @@ private:
|
|||
std::vector<Chunk> m_chunks;
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Compact storage for primitive classifcation
|
||||
*
|
||||
* When classifying primitives with respect to a split plane,
|
||||
* a data structure is needed to hold the tertiary result of
|
||||
* this operation. This class implements a compact storage
|
||||
* (2 bits per entry) in the spirit of the std::vector<bool>
|
||||
* specialization.
|
||||
*/
|
||||
class ClassificationStorage {
|
||||
public:
|
||||
inline ClassificationStorage() : m_buffer(NULL),
|
||||
m_bufferSize(0) {
|
||||
}
|
||||
|
||||
inline ClassificationStorage(size_t size) {
|
||||
m_buffer = new uint8_t[m_bufferSize];
|
||||
m_bufferSize = size/4;
|
||||
}
|
||||
|
||||
inline ~ClassificationStorage() {
|
||||
if (m_buffer)
|
||||
delete[] m_buffer;
|
||||
}
|
||||
|
||||
inline void set(uint32_t index, uint8_t value) {
|
||||
uint8_t *ptr = m_buffer + (index >> 2);
|
||||
uint8_t shift = (index & 3) << 1;
|
||||
*ptr = (*ptr & ~(3 << shift)) | (value << shift);
|
||||
}
|
||||
|
||||
inline uint8_t get(uint32_t index) const {
|
||||
uint8_t *ptr = m_buffer + (index >> 2);
|
||||
uint8_t shift = (index & 3) << 1;
|
||||
return (*ptr >> shift) & 3;
|
||||
}
|
||||
|
||||
inline size_t getSize() const {
|
||||
return m_bufferSize;
|
||||
}
|
||||
private:
|
||||
uint8_t *m_buffer;
|
||||
size_t m_bufferSize;
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Generic kd-tree for data structure used to accelerate
|
||||
* ray intersections against large amounts of three-dimensional
|
||||
|
@ -172,8 +217,6 @@ template <typename Derived> class GenericKDTree : public Object {
|
|||
protected:
|
||||
struct KDNode;
|
||||
struct EdgeEvent;
|
||||
typedef EdgeEvent *EdgeEventPtr;
|
||||
typedef EdgeEventPtr EdgeEventPtr3[3];
|
||||
|
||||
public:
|
||||
/// Index number format (max 2^32 prims)
|
||||
|
@ -197,6 +240,7 @@ public:
|
|||
struct BuildContext {
|
||||
OrderedChunkAllocator leftAlloc, rightAlloc;
|
||||
OrderedChunkAllocator tempAlloc, nodeAlloc;
|
||||
ClassificationStorage storage;
|
||||
};
|
||||
|
||||
GenericKDTree() : m_root(NULL) {
|
||||
|
@ -267,6 +311,7 @@ public:
|
|||
|
||||
Log(EInfo, "Constructing a SAH kd-tree (%i primitives) ..", primCount);
|
||||
|
||||
ctx.storage = ClassificationStorage(primCount);
|
||||
m_root = nodeAlloc.allocate<KDNode>(1);
|
||||
Float finalSAHCost = buildTree(ctx, 1, m_root,
|
||||
m_aabb, m_aabb, indices, primCount, true, 0);
|
||||
|
@ -293,6 +338,8 @@ public:
|
|||
ctx.tempAlloc.getChunkCount(), ctx.tempAlloc.getSize() / 1024.0f);
|
||||
Log(EDebug, " Nodes: " SIZE_T_FMT " chunks (%.2f KiB)",
|
||||
ctx.nodeAlloc.getChunkCount(), ctx.nodeAlloc.getSize() / 1024.0f);
|
||||
Log(EDebug, " Classification storage : %.2f KiB", ctx.storage.getSize() / 1024.0f);
|
||||
|
||||
Log(EDebug, "Detailed kd-tree statistics:");
|
||||
Log(EDebug, " Final SAH cost : %.2f", finalSAHCost);
|
||||
Log(EDebug, " Inner nodes : %i", m_innerNodeCount);
|
||||
|
@ -310,6 +357,183 @@ public:
|
|||
ctx.tempAlloc.cleanup();
|
||||
m_aabb.getSurfaceArea();
|
||||
}
|
||||
protected:
|
||||
/// Primitive classification during tree-construction
|
||||
enum EClassificationResult {
|
||||
EBothSides = 0,
|
||||
ELeftSide = 1,
|
||||
ERightSide = 2
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Describes the beginning or end of a primitive
|
||||
* when projected onto a certain dimension.
|
||||
*/
|
||||
struct EdgeEvent {
|
||||
/// Possible event types
|
||||
enum EEventType {
|
||||
EEdgeEnd = 0,
|
||||
EEdgePlanar = 1,
|
||||
EEdgeStart = 2
|
||||
};
|
||||
|
||||
/// Dummy constructor
|
||||
inline EdgeEvent() { }
|
||||
|
||||
/// Create a new edge event
|
||||
inline EdgeEvent(int type, float t, index_type index)
|
||||
: t(t), index(index), type(type) { }
|
||||
|
||||
/// Plane position
|
||||
float t;
|
||||
/// Primitive index
|
||||
index_type index;
|
||||
/// Event type: end/planar/start
|
||||
uint16_t type;
|
||||
/// Event dimension
|
||||
uint16_t dim;
|
||||
};
|
||||
|
||||
BOOST_STATIC_ASSERT(sizeof(EdgeEvent) == 12);
|
||||
|
||||
/// Edge event comparison functor
|
||||
struct EdgeEventOrdering : public std::binary_function<EdgeEvent, EdgeEvent, bool> {
|
||||
inline bool operator()(const EdgeEvent &a, const EdgeEvent &b) const {
|
||||
if (a.dim != b.dim)
|
||||
return a.dim < b.dim;
|
||||
if (a.t != b.t)
|
||||
return a.t < b.t;
|
||||
return a.type < b.type;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief KD-tree node in 8 bytes.
|
||||
*/
|
||||
struct KDNode {
|
||||
union {
|
||||
/* Inner node */
|
||||
struct {
|
||||
/* Bit layout:
|
||||
31 : False (inner node)
|
||||
30 : Indirection node flag
|
||||
29-3 : Offset to the left child
|
||||
2-0 : Split axis
|
||||
*/
|
||||
uint32_t combined;
|
||||
|
||||
/// Split plane coordinate
|
||||
float split;
|
||||
} inner;
|
||||
|
||||
/* Leaf node */
|
||||
struct {
|
||||
/* Bit layout:
|
||||
31 : True (leaf node)
|
||||
30-0 : Offset to the node's primitive list
|
||||
*/
|
||||
uint32_t combined;
|
||||
|
||||
/// End offset of the primitive list
|
||||
uint32_t end;
|
||||
} leaf;
|
||||
};
|
||||
|
||||
enum EMask {
|
||||
ETypeMask = 1 << 31,
|
||||
EIndirectionMask = 1 << 30,
|
||||
ELeafOffsetMask = ~ETypeMask,
|
||||
EInnerAxisMask = 0x3,
|
||||
EInnerOffsetMask = ~(EInnerAxisMask + EIndirectionMask),
|
||||
ERelOffsetLimit = (1<<28) - 1
|
||||
};
|
||||
|
||||
/// Initialize a leaf kd-Tree node
|
||||
inline void initLeafNode(unsigned int offset, unsigned int numPrims) {
|
||||
leaf.combined = ETypeMask | offset;
|
||||
leaf.end = offset + numPrims;
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialize an interior kd-Tree node. Reports a failure if the
|
||||
* relative offset to the left child node is too large.
|
||||
*/
|
||||
inline bool initInnerNode(int axis, float split, ptrdiff_t relOffset) {
|
||||
if (relOffset < 0 || relOffset > ERelOffsetLimit)
|
||||
return false;
|
||||
inner.combined = axis | ((uint32_t) relOffset << 2);
|
||||
inner.split = split;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Initialize an interior indirection node.
|
||||
*
|
||||
* Indirections are necessary whenever the children cannot be
|
||||
* referenced using a relative pointer, which can happen when
|
||||
* they lie in different memory chunks. In this case, the node
|
||||
* stores an index into a globally shared pointer list.
|
||||
*/
|
||||
inline void initIndirectionNode(int axis, float split, uint32_t indirectionEntry) {
|
||||
inner.combined = EIndirectionMask | axis | ((uint32_t) indirectionEntry << 2);
|
||||
inner.split = split;
|
||||
}
|
||||
|
||||
/// Is this a leaf node?
|
||||
FINLINE bool isLeaf() const {
|
||||
return leaf.combined & ETypeMask;
|
||||
}
|
||||
|
||||
/// Is this an indirection node?
|
||||
FINLINE bool isIndirection() const {
|
||||
return leaf.combined & EIndirectionMask;
|
||||
}
|
||||
|
||||
/// Assuming this is a leaf node, return the first primitive index
|
||||
FINLINE index_type getPrimStart() const {
|
||||
return leaf.combined & ELeafOffsetMask;
|
||||
}
|
||||
|
||||
/// Assuming this is a leaf node, return the last primitive index
|
||||
FINLINE index_type getPrimEnd() const {
|
||||
return leaf.end;
|
||||
}
|
||||
|
||||
/// Return the index of an indirection node
|
||||
FINLINE index_type getIndirectionIndex() const {
|
||||
return(inner.combined & EInnerOffsetMask) >> 2;
|
||||
}
|
||||
|
||||
/// Return the left child (assuming that this is an interior node)
|
||||
FINLINE const KDNode * __restrict getLeft() const {
|
||||
return this +
|
||||
((inner.combined & EInnerOffsetMask) >> 2);
|
||||
}
|
||||
|
||||
/// Return the left child (assuming that this is an interior node)
|
||||
FINLINE KDNode * __restrict getLeft() {
|
||||
return this +
|
||||
((inner.combined & EInnerOffsetMask) >> 2);
|
||||
}
|
||||
|
||||
/// Return the left child (assuming that this is an interior node)
|
||||
FINLINE const KDNode * __restrict getRight() const {
|
||||
return getLeft() + 1;
|
||||
}
|
||||
|
||||
/// Return the split plane location (assuming that this is an interior node)
|
||||
FINLINE float getSplit() const {
|
||||
return inner.split;
|
||||
}
|
||||
|
||||
/// Return the split axis (assuming that this is an interior node)
|
||||
FINLINE int getAxis() const {
|
||||
return inner.combined & EInnerAxisMask;
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_STATIC_ASSERT(sizeof(KDNode) == 8);
|
||||
|
||||
|
||||
/**
|
||||
* \brief Leaf node creation helper function
|
||||
|
@ -463,9 +687,8 @@ public:
|
|||
}
|
||||
|
||||
Float buildTreeSAH(BuildContext &ctx, unsigned int depth, const KDNode *node,
|
||||
const AABB &nodeAABB, EdgeEventPtr3 firstEventByAxis,
|
||||
EdgeEventPtr3 lastEventByAxis, size_type primCount, bool isLeftChild,
|
||||
size_type badRefines) {
|
||||
const AABB &nodeAABB, EdgeEvent *firstEvent, EdgeEvent *lastEvent,
|
||||
size_type primCount, bool isLeftChild, size_type badRefines) {
|
||||
|
||||
Float leafCost = primCount * m_intersectionCost;
|
||||
if (primCount <= m_stopPrims || depth >= m_maxDepth) {
|
||||
|
@ -473,6 +696,10 @@ public:
|
|||
return leafCost;
|
||||
}
|
||||
|
||||
Float invSA = 1.0f / nodeAABB.getSurfaceArea();
|
||||
SplitCandidate bestSplit;
|
||||
bestSplit.sahCost = std::numeric_limits<Float>::infinity();
|
||||
|
||||
/* ==================================================================== */
|
||||
/* Split candidate search */
|
||||
/* ==================================================================== */
|
||||
|
@ -480,67 +707,185 @@ public:
|
|||
/* First, find the optimal splitting plane according to the
|
||||
surface area heuristic. To do this in O(n), the search is
|
||||
implemented as a sweep over the edge events */
|
||||
for (int axis=0; axis<3; axis++) {
|
||||
/* Initially, the split plane is placed left of the scene
|
||||
and thus all geometry is on its right side */
|
||||
int numLeft = 0, numPlanar = 0, numRight = primCount;
|
||||
const EdgeEvent *firstEvent = firstEventByAxis[axis];
|
||||
const EdgeEvent *lastEvent = lastEventByAxis[axis];
|
||||
|
||||
/* Iterate over all events on the current axis */
|
||||
for (EdgeEvent *event = firstEvent; event < lastEvent; ++event) {
|
||||
/* Record the current position and count all
|
||||
other events, which are also here */
|
||||
Float t = event->t;
|
||||
int numStart = 0, numEnd = 0;
|
||||
|
||||
/* Count "end" events */
|
||||
while (event != lastEvent && event->t == t
|
||||
&& event->type == EdgeEvent::EEdgeEnd) {
|
||||
++numEnd; ++event;
|
||||
}
|
||||
|
||||
/* Count "planar" events */
|
||||
while (event != lastEvent && event->t == t
|
||||
&& event->type == EdgeEvent::EEdgePlanar) {
|
||||
++numPlanar; ++event;
|
||||
}
|
||||
|
||||
/* Count "start" events */
|
||||
while (event != lastEvent && event->t == t
|
||||
&& event->type == EdgeEvent::EEdgeStart) {
|
||||
++numStart; ++event;
|
||||
}
|
||||
|
||||
/* The split plane can now be moved onto 't'.
|
||||
Accordingly, all planar and ending primitives
|
||||
are removed from the right side */
|
||||
numRight -= numPlanar; numRight -= numEnd;
|
||||
|
||||
/* Calculate a score using the surface area heuristic */
|
||||
if (t >= nodeAABB.min[axis] && t <= nodeAABB.max[axis]) {
|
||||
/* Score score = SAH(axis, invSA, aabb, t, numLeft,
|
||||
numRight, numPlanar);
|
||||
if (score < bestSplit) {
|
||||
bestSplit = score;
|
||||
}*/
|
||||
} else {
|
||||
/* When primitive clipping is active, this should
|
||||
never happen! */
|
||||
AssertEx(!m_clip, "Internal error: edge event is out of bounds");
|
||||
}
|
||||
|
||||
/* The split plane is moved past 't'. All prims,
|
||||
which were planar on 't', are moved to the left
|
||||
side. Also, starting prims are now also left of
|
||||
the split plane. */
|
||||
numLeft += numStart; numLeft += numPlanar;
|
||||
numPlanar = 0;
|
||||
}
|
||||
/* Sanity checks. Everything should now be on the
|
||||
left side of the split plane */
|
||||
Assert(numRight == 0 && numLeft == primCount);
|
||||
/* Initially, the split plane is placed left of the scene
|
||||
and thus all geometry is on its right side */
|
||||
size_type numLeft[3], numRight[3];
|
||||
AABB aabb(nodeAABB);
|
||||
for (int i=0; i<3; ++i) {
|
||||
numLeft[i] = 0;
|
||||
numRight[i] = primCount;
|
||||
}
|
||||
EdgeEvent *eventsByAxis[3];
|
||||
int eventsByAxisCtr = 1;
|
||||
eventsByAxis[0] = firstEvent;
|
||||
|
||||
/* Iterate over all events on the current axis */
|
||||
for (EdgeEvent *event = firstEvent; event < lastEvent; ++event) {
|
||||
/* Record the current position and count all
|
||||
other events, which are also here */
|
||||
uint16_t axis = event->axis;
|
||||
Float t = event->t;
|
||||
size_type numStart = 0, numEnd = 0, numPlanar = 0;
|
||||
|
||||
/* Count "end" events */
|
||||
while (event != lastEvent && event->t == t && event->axis == axis
|
||||
&& event->type == EdgeEvent::EEdgeEnd) {
|
||||
++numEnd; ++event;
|
||||
}
|
||||
|
||||
/* Count "planar" events */
|
||||
while (event != lastEvent && event->t == t && event->axis == axis
|
||||
&& event->type == EdgeEvent::EEdgePlanar) {
|
||||
++numPlanar; ++event;
|
||||
}
|
||||
|
||||
/* Count "start" events */
|
||||
while (event != lastEvent && event->t == t && event->axis == axis
|
||||
&& event->type == EdgeEvent::EEdgeStart) {
|
||||
++numStart; ++event;
|
||||
}
|
||||
|
||||
if (event < lastEvent && event->axis != axis) {
|
||||
Assert(eventsByAxisCtr < 3);
|
||||
/* Keep track of the beginning of dimensions */
|
||||
eventsByAxis[eventsByAxisCtr++] = event;
|
||||
}
|
||||
|
||||
/* The split plane can now be moved onto 't'. Accordingly, all planar
|
||||
and ending primitives are removed from the right side */
|
||||
numRight[axis] -= numPlanar + numEnd;
|
||||
|
||||
/* Calculate a score using the surface area heuristic */
|
||||
if (EXPECT_TAKEN(t >= nodeAABB.min[axis] && t <= nodeAABB.max[axis])) {
|
||||
Float tmp = m_aabb.max[axis];
|
||||
aabb.max[axis] = t;
|
||||
Float pLeft = invSA * aabb.getSurfaceArea();
|
||||
aabb.max[axis] = tmp;
|
||||
tmp = aabb.min[axis];
|
||||
aabb.min[axis] = t;
|
||||
Float pRight = invSA * aabb.getSurfaceArea();
|
||||
aabb.min[axis] = tmp;
|
||||
Float sahCostPlanarLeft = m_traversalCost + m_intersectionCost
|
||||
* (pLeft * (numLeft[axis] + numPlanar) + pRight * numRight[axis]);
|
||||
Float sahCostPlanarRight = m_traversalCost + m_intersectionCost
|
||||
* (pLeft * numLeft[axis] + pRight * (numRight[axis] + numPlanar));
|
||||
|
||||
if (sahCostPlanarLeft < bestSplit.sahCost || sahCostPlanarRight < bestSplit.sahCost) {
|
||||
bestSplit.pos = t;
|
||||
bestSplit.axis = axis;
|
||||
if (sahCostPlanarLeft < sahCostPlanarRight) {
|
||||
bestSplit.sahCost = sahCostPlanarLeft;
|
||||
bestSplit.numLeft = numLeft[axis] + numPlanar;
|
||||
bestSplit.numRight = numRight[axis];
|
||||
bestSplit.planarLeft = true;
|
||||
} else {
|
||||
bestSplit.sahCost = sahCostPlanarRight;
|
||||
bestSplit.numLeft = numLeft[axis];
|
||||
bestSplit.numRight = numRight[axis] + numPlanar;
|
||||
bestSplit.planarLeft = false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* When primitive clipping is active, this should
|
||||
never happen! */
|
||||
AssertEx(!m_clip, "Internal error: edge event is out of bounds");
|
||||
}
|
||||
|
||||
/* The split plane is moved past 't'. All prims,
|
||||
which were planar on 't', are moved to the left
|
||||
side. Also, starting prims are now also left of
|
||||
the split plane. */
|
||||
numLeft[axis] += numStart + numPlanar;
|
||||
}
|
||||
|
||||
/* Sanity checks. Everything should now be left of the split plane */
|
||||
Assert(numRight[0] == 0 && numLeft[0] == primCount &&
|
||||
numRight[1] == 0 && numLeft[1] == primCount &&
|
||||
numRight[2] == 0 && numLeft[2] == primCount);
|
||||
|
||||
Assert(eventsByAxis[1]->axis == 1 && (eventsByAxis[1]-1)->axis == 0);
|
||||
Assert(eventsByAxis[1]->axis == 2 && (eventsByAxis[1]-1)->axis == 1);
|
||||
|
||||
Assert(bestSplit.sahCost != std::numeric_limits<Float>::infinity());
|
||||
|
||||
/* "Bad refines" heuristic from PBRT */
|
||||
if (bestSplit.sahCost >= leafCost) {
|
||||
if ((bestSplit.sahCost > 4 * leafCost && primCount < 16)
|
||||
|| badRefines >= m_maxBadRefines) {
|
||||
createLeaf(ctx, node, nodeAABB, primCount);
|
||||
return leafCost;
|
||||
}
|
||||
++badRefines;
|
||||
}
|
||||
|
||||
/* ==================================================================== */
|
||||
/* Primitive Classification */
|
||||
/* ==================================================================== */
|
||||
|
||||
ClassificationStorage &storage = ctx.storage;
|
||||
|
||||
/* Initially mark all prims as being located on both sides */
|
||||
for (EdgeEvent *event = eventsByAxis[bestSplit.axis];
|
||||
event < lastEvent && event->axis == bestSplit.axis; ++event)
|
||||
storage.set(event->index, EBothSides);
|
||||
|
||||
size_type primsLeft = 0, primsRight = 0, primsBoth = primCount;
|
||||
/* Sweep over all edge events and classify the primitives wrt. the split */
|
||||
for (EdgeEvent *event = eventsByAxis[bestSplit.axis];
|
||||
event < lastEvent && event->axis == bestSplit.axis; ++event) {
|
||||
if (event->type == EdgeEvent::EEdgeEnd && event.t <= bestSplit.pos) {
|
||||
/* The primitive's interval ends before or on the split plane
|
||||
-> classify to the left side */
|
||||
Assert(storage.get(event.index) == EBothSides);
|
||||
storage.set(event.index, ELeftSide);
|
||||
primsBoth--;
|
||||
primsLeft++;
|
||||
} else if (event->type == EdgeEvent::EEdgeStart
|
||||
&& event.t >= bestSplit.pos) {
|
||||
/* The primitive's interval starts after or on the split plane
|
||||
-> classify to the right side */
|
||||
Assert(storage.get(event.index) == EBothSides);
|
||||
storage.set(event.index, ERightSide);
|
||||
primsBoth--;
|
||||
primsRight++;
|
||||
} else if (event.type == EdgeEvent::EEdgePlanar) {
|
||||
/* If the planar primitive is not on the split plane, the
|
||||
classification is easy. Otherwise, place it on the side with
|
||||
the better SAH score */
|
||||
Assert(storage.get(event.index) == EBothSides);
|
||||
if (event.t < bestSplit.t || (event.t == bestSplit.pos
|
||||
&& bestSplit.planarLeft)) {
|
||||
storage.set(event.index, ELeftSide);
|
||||
primsBoth--;
|
||||
primsLeft++;
|
||||
} else if (event.t > bestSplit.t || (event.t == bestSplit.pos &&
|
||||
!bestSplit.planarLeft)) {
|
||||
storage.set(event.index, ERightSide);
|
||||
primsBoth--;
|
||||
primsRight++;
|
||||
} else {
|
||||
AssertEx(false, "Internal error!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Some sanity checks */
|
||||
Assert(primsLeft + primsRight + primsBoth == primCount);
|
||||
Assert(primsLeft + primsBoth == bestSplit.nLeft);
|
||||
Assert(primsRight + primsBoth == bestSplit.nRight);
|
||||
|
||||
EdgeEvent *leftEvents, *rightEvents;
|
||||
if (isLeftChild) {
|
||||
OrderedChunkAllocator &rightAlloc = ctx.rightAlloc;
|
||||
leftEvents = firstEvent;
|
||||
rightEvents = rightAlloc.allocate<EdgeEvent>(bestSplit.numRight * 6);
|
||||
} else {
|
||||
OrderedChunkAllocator &leftAlloc = ctx.leftAlloc;
|
||||
leftEvents = leftAlloc.allocate<EdgeEvent>(bestSplit.numLeft * 6);
|
||||
rightEvents = firstEvent;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
@ -563,171 +908,6 @@ public:
|
|||
ctx.nodeAlloc.release(left);
|
||||
}
|
||||
}
|
||||
protected:
|
||||
/**
|
||||
* \brief Describes the beginning or end of a primitive
|
||||
* when projected onto a certain dimension.
|
||||
*/
|
||||
struct EdgeEvent {
|
||||
/// Possible event types
|
||||
enum EEventType {
|
||||
EEdgeEnd = 0,
|
||||
EEdgePlanar = 1,
|
||||
EEdgeStart = 2
|
||||
};
|
||||
|
||||
/// Dummy constructor
|
||||
inline EdgeEvent() { }
|
||||
|
||||
/// Create a new edge event
|
||||
inline EdgeEvent(int type, float t, index_type index)
|
||||
: t(t), index(index), type(type) { }
|
||||
|
||||
/// Plane position
|
||||
float t;
|
||||
/// Primitive index
|
||||
index_type index;
|
||||
/// Event type: end/planar/start
|
||||
int type;
|
||||
};
|
||||
|
||||
BOOST_STATIC_ASSERT(sizeof(EdgeEvent) == 12);
|
||||
|
||||
/// Edge event comparison functor
|
||||
struct EdgeEventOrdering : public std::binary_function<EdgeEvent, EdgeEvent, bool> {
|
||||
inline bool operator()(const EdgeEvent &a, const EdgeEvent &b) const {
|
||||
if (a.t != b.t)
|
||||
return a.t < b.t;
|
||||
return a.type < b.type;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief KD-tree node in 8 bytes.
|
||||
*/
|
||||
struct KDNode {
|
||||
union {
|
||||
/* Inner node */
|
||||
struct {
|
||||
/* Bit layout:
|
||||
31 : False (inner node)
|
||||
30 : Indirection node flag
|
||||
29-3 : Offset to the left child
|
||||
2-0 : Split axis
|
||||
*/
|
||||
uint32_t combined;
|
||||
|
||||
/// Split plane coordinate
|
||||
float split;
|
||||
} inner;
|
||||
|
||||
/* Leaf node */
|
||||
struct {
|
||||
/* Bit layout:
|
||||
31 : True (leaf node)
|
||||
30-0 : Offset to the node's primitive list
|
||||
*/
|
||||
uint32_t combined;
|
||||
|
||||
/// End offset of the primitive list
|
||||
uint32_t end;
|
||||
} leaf;
|
||||
};
|
||||
|
||||
enum EMask {
|
||||
ETypeMask = 1 << 31,
|
||||
EIndirectionMask = 1 << 30,
|
||||
ELeafOffsetMask = ~ETypeMask,
|
||||
EInnerAxisMask = 0x3,
|
||||
EInnerOffsetMask = ~(EInnerAxisMask + EIndirectionMask),
|
||||
ERelOffsetLimit = (1<<28) - 1
|
||||
};
|
||||
|
||||
/// Initialize a leaf kd-Tree node
|
||||
inline void initLeafNode(unsigned int offset, unsigned int numPrims) {
|
||||
leaf.combined = ETypeMask | offset;
|
||||
leaf.end = offset + numPrims;
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialize an interior kd-Tree node. Reports a failure if the
|
||||
* relative offset to the left child node is too large.
|
||||
*/
|
||||
inline bool initInnerNode(int axis, float split, ptrdiff_t relOffset) {
|
||||
if (relOffset < 0 || relOffset > ERelOffsetLimit)
|
||||
return false;
|
||||
inner.combined = axis | ((uint32_t) relOffset << 2);
|
||||
inner.split = split;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Initialize an interior indirection node.
|
||||
*
|
||||
* Indirections are necessary whenever the children cannot be
|
||||
* referenced using a relative pointer, which can happen when
|
||||
* they lie in different memory chunks. In this case, the node
|
||||
* stores an index into a globally shared pointer list.
|
||||
*/
|
||||
inline void initIndirectionNode(int axis, float split, uint32_t indirectionEntry) {
|
||||
inner.combined = EIndirectionMask | axis | ((uint32_t) indirectionEntry << 2);
|
||||
inner.split = split;
|
||||
}
|
||||
|
||||
/// Is this a leaf node?
|
||||
FINLINE bool isLeaf() const {
|
||||
return leaf.combined & ETypeMask;
|
||||
}
|
||||
|
||||
/// Is this an indirection node?
|
||||
FINLINE bool isIndirection() const {
|
||||
return leaf.combined & EIndirectionMask;
|
||||
}
|
||||
|
||||
/// Assuming this is a leaf node, return the first primitive index
|
||||
FINLINE index_type getPrimStart() const {
|
||||
return leaf.combined & ELeafOffsetMask;
|
||||
}
|
||||
|
||||
/// Assuming this is a leaf node, return the last primitive index
|
||||
FINLINE index_type getPrimEnd() const {
|
||||
return leaf.end;
|
||||
}
|
||||
|
||||
/// Return the index of an indirection node
|
||||
FINLINE index_type getIndirectionIndex() const {
|
||||
return(inner.combined & EInnerOffsetMask) >> 2;
|
||||
}
|
||||
|
||||
/// Return the left child (assuming that this is an interior node)
|
||||
FINLINE const KDNode * __restrict getLeft() const {
|
||||
return this +
|
||||
((inner.combined & EInnerOffsetMask) >> 2);
|
||||
}
|
||||
|
||||
/// Return the left child (assuming that this is an interior node)
|
||||
FINLINE KDNode * __restrict getLeft() {
|
||||
return this +
|
||||
((inner.combined & EInnerOffsetMask) >> 2);
|
||||
}
|
||||
|
||||
/// Return the left child (assuming that this is an interior node)
|
||||
FINLINE const KDNode * __restrict getRight() const {
|
||||
return getLeft() + 1;
|
||||
}
|
||||
|
||||
/// Return the split plane location (assuming that this is an interior node)
|
||||
FINLINE float getSplit() const {
|
||||
return inner.split;
|
||||
}
|
||||
|
||||
/// Return the split axis (assuming that this is an interior node)
|
||||
FINLINE int getAxis() const {
|
||||
return inner.combined & EInnerAxisMask;
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_STATIC_ASSERT(sizeof(KDNode) == 8);
|
||||
|
||||
/**
|
||||
* \brief Min-max binning as described in
|
||||
|
|
Loading…
Reference in New Issue