hslt: util.h: add boilerplate coordinate derivative function
parent
4a0d0aa694
commit
4ce6960230
|
@ -329,6 +329,14 @@ extern MTS_EXPORT_CORE bool solveLinearSystem2x2(const Float a[2][2], const Floa
|
|||
*/
|
||||
extern MTS_EXPORT_CORE void coordinateSystem(const Vector &a, Vector &b, Vector &c);
|
||||
|
||||
/**
|
||||
* \brief Derivatives of a frame formed by coordinateSystem
|
||||
* \param n Source tangent frame that was created with coordinateSystem
|
||||
* \param ds derivative of the frame with respect to s. ds.n should already contain normal derivative along s
|
||||
* \param dt derivative of the frame with respect to t. dt.n should already contain normal derivative along t
|
||||
*/
|
||||
extern MTS_EXPORT_CORE void coordinateSystemDerivatives(const Frame &frame, Frame &ds, Frame &dt);
|
||||
|
||||
/**
|
||||
* \brief Generate (optionally jittered) stratified 1D samples
|
||||
* \param random Source of random numbers
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
#include <mitsuba/core/random.h>
|
||||
#include <mitsuba/core/quad.h>
|
||||
#include <mitsuba/core/sse.h>
|
||||
#include <mitsuba/core/frame.h>
|
||||
#include <boost/bind.hpp>
|
||||
#include <stdarg.h>
|
||||
#include <iomanip>
|
||||
|
@ -599,6 +600,29 @@ void coordinateSystem(const Vector &a, Vector &b, Vector &c) {
|
|||
b = cross(c, a);
|
||||
}
|
||||
|
||||
void coordinateSystemDerivatives(const Frame &frame, Frame &ds, Frame &dt) {
|
||||
|
||||
const Vector n = frame.n;
|
||||
const Vector s = frame.s;
|
||||
|
||||
if(std::abs(n.x) > std::abs(n.y)) {
|
||||
const Float invLen = 1 / std::sqrt(n.x * n.x + n.z * n.z);
|
||||
ds.s = Vector(ds.n.z * invLen, 0, -ds.n.x * invLen);
|
||||
ds.s -= s * dot(ds.s, s);
|
||||
dt.s = Vector(dt.n.z * invLen, 0, -dt.n.x * invLen);
|
||||
dt.s -= s * dot(dt.s, s);
|
||||
} else {
|
||||
const Float invLen = 1 / std::sqrt(n.y * n.y + n.z * n.z);
|
||||
ds.s = Vector(0, ds.n.z * invLen, -ds.n.y * invLen);
|
||||
ds.s -= s * dot(ds.s, s);
|
||||
dt.s = Vector(0, dt.n.z * invLen, -dt.n.y * invLen);
|
||||
dt.s -= s * dot(dt.s, s);
|
||||
}
|
||||
|
||||
dt.t = cross(s, ds.n) + cross(dt.s, n);
|
||||
ds.t = cross(s, dt.n) + cross(ds.s, n);
|
||||
}
|
||||
|
||||
Point2 toSphericalCoordinates(const Vector &v) {
|
||||
Point2 result(
|
||||
std::acos(v.z),
|
||||
|
|
|
@ -40,7 +40,7 @@ MTS_NAMESPACE_BEGIN
|
|||
TriMesh::TriMesh(const std::string &name, size_t triangleCount,
|
||||
size_t vertexCount, bool hasNormals, bool hasTexcoords,
|
||||
bool hasVertexColors, bool flipNormals, bool faceNormals)
|
||||
: Shape(Properties()), m_triangleCount(triangleCount),
|
||||
: Shape(Properties()), m_triangleCount(triangleCount),
|
||||
m_vertexCount(vertexCount), m_flipNormals(flipNormals),
|
||||
m_faceNormals(faceNormals) {
|
||||
m_name = name;
|
||||
|
@ -762,7 +762,7 @@ void TriMesh::getNormalDerivative(const Intersection &its,
|
|||
|
||||
/* Recompute the barycentric coordinates, since 'its.uv' may have been
|
||||
overwritten with coordinates of the texture "parameterization". */
|
||||
Vector rel = its.p - p0, du = p1 - p0, dv = p2 - p0;
|
||||
Vector rel = its.p - p0, du = p1 - p0, dv = p2 - p0;
|
||||
|
||||
Float b1 = dot(du, rel), b2 = dot(dv, rel), /* Normal equations */
|
||||
a11 = dot(du, du), a12 = dot(du, dv),
|
||||
|
|
Loading…
Reference in New Issue