initial generic ray intersection architecture

metadata
Wenzel Jakob 2010-10-12 01:10:28 +02:00
parent baa41a195a
commit 440656a875
2 changed files with 200 additions and 24 deletions

View File

@ -26,12 +26,10 @@
/// Activate lots of extra checks
#define MTS_KD_DEBUG 1
/// Compile-time KD-tree depth limit
/** Compile-time KD-tree depth limit. Allows to put certain
data structures on the stack */
#define MTS_KD_MAX_DEPTH 48
/// Collect statistics during building/traversal
#define MTS_KD_STATISTICS 1
/// Min-max bin count
#define MTS_KD_MINMAX_BINS 128
@ -42,6 +40,13 @@
#define MTS_KD_BLOCKSIZE_KD (512*1024/sizeof(KDNode))
#define MTS_KD_BLOCKSIZE_IDX (512*1024/sizeof(uint32_t))
/// 8*4=32 byte temporary storage for intersection computations
#define MTS_KD_INTERSECTION_TEMP 8
/// Use a simple hashed 8-entry mailbox per thread
#define MTS_KD_MAILBOX_SIZE 8
#define MTS_KD_MAILBOX_MASK (MTS_KD_MAILBOX_SIZE-1)
#if defined(MTS_KD_DEBUG)
#define KDAssert(expr) Assert(expr)
#define KDAssertEx(expr, text) AssertEx(expr, text)
@ -421,25 +426,40 @@ private:
* \brief SAH KD-tree acceleration data structure for fast ray-object
* intersection computations.
*
* The code in this class is fully generic and can theoretically
* support any kind of shape. Subclasses need to provide the following
* signatures for a functional implementation:
* The code in this class is a fully generic kd-tree implementation, which
* can theoretically support any kind of shape. However, subclasses still
* need to provide the following signatures for a functional implementation:
*
* /// Return the total number of primitives
* inline size_type getPrimitiveCount() const;
*
* /// Return an axis-aligned bounding box of a certain primitive
* /// Return the axis-aligned bounding box of a certain primitive
* inline AABB getAABB(index_type primIdx) const;
*
* /// Return an AABB of a primitive when clipped to another AABB
* /// Return the AABB of a primitive when clipped to another AABB
* inline AABB getClippedAABB(index_type primIdx, const AABB &aabb) const;
*
* /// Check whether a primitive is intersected by the given ray. Some
* /// temporary space is supplied, which can be used to store information
* /// to be used in \ref fillIntersectionDetails.
* EIntersectionResult intersect(const Ray &ray, index_type idx, Float mint,
* Float maxt, Float &t, void *tmp);
*
* /// After having found a unique intersection, fill a proper record
* /// using the temporary information collected in \ref intersect()
* void fillIntersectionDetails(const Ray &ray, Float t, const void *tmp,
* Intersection &its) const;
*
* This class follows the "Curiously recurring template" design pattern so that
* the above functions can be inlined (no virtual calls will be necessary!).
*
* The kd-tree construction algorithm creates 'perfect split' trees as
* outlined in the paper "On Building fast kd-Trees for Ray Tracing, and on
* doing that in O(N log N)" by Ingo Wald and Vlastimil Havran.
* For polygonal meshes, the involved Sutherland-Hodgman iterations can be
* quite expensive in terms of the overall construction time. The \ref setClip
* method can be used to deactivate perfect splits at the cost of a
* lower-quality tree.
*
* Because the O(N log N) construction algorithm tends to cause many
* incoherent memory accesses, a fast approximate technique (Min-max binning)
@ -447,7 +467,10 @@ private:
* Once the input data has been narrowed down to a reasonable amount, the
* implementation switches over to the O(N log N) builder. When multiple
* processors are available, the build process runs in parallel.
*
*
* This implementation also provides an optimized ray traversal algorithm
* (TA^B_{rec}), which is explained in Vlastimil Havran's PhD thesis
* "Heuristic Ray Shooting Algorithms".
*/
template <typename Derived> class GenericKDTree : public Object {
protected:
@ -486,7 +509,7 @@ public:
if (m_indices)
delete[] m_indices;
if (m_nodes)
delete[] m_nodes;
freeAligned(m_nodes);
}
/**
@ -643,11 +666,18 @@ public:
return m_exactPrimThreshold;
}
/**
* \brief Return whether or not the kd-tree has been built
*/
inline bool isBuilt() const {
return m_nodes != NULL;
}
/**
* \brief Build a KD-tree over supplied geometry
*/
void build() {
if (m_nodes != NULL)
if (isBuilt())
Log(EError, "The kd-tree has already been built!");
size_type primCount = cast()->getPrimitiveCount();
@ -762,7 +792,8 @@ public:
Float sahCost = 0;
size_type nodePtr = 0, indexPtr = 0;
m_nodes = new KDNode[ctx.innerNodeCount + ctx.leafNodeCount];
m_nodes = static_cast<KDNode *> (allocAligned(
ctx.innerNodeCount + ctx.leafNodeCount));
m_indices = new index_type[ctx.primIndexCount];
stack.push(boost::make_tuple(prelimRoot, &m_nodes[nodePtr++], &ctx, m_aabb));
@ -871,23 +902,77 @@ public:
Log(EDebug, " Expected prim. visits/ray : %.2f", expPrimitivesIntersected);
Log(EDebug, " Final SAH cost : %.2f", sahCost);
Log(EDebug, "");
}
/**
* \brief Intersect a ray against all primitives stored in the kd-tree
*/
bool rayIntersect(const Ray &ray, Intersection &its) {
uint32_t temp[MTS_KD_INTERSECTION_TEMP];
its.t = std::numeric_limits<Float>::infinity();
Float mint, maxt;
if (m_aabb.rayIntersect(ray, mint, maxt)) {
if (ray.mint > mint) mint = ray.mint;
if (ray.maxt < maxt) maxt = ray.maxt;
if (EXPECT_TAKEN(maxt > mint)) {
if (rayIntersect<false>(ray, mint, maxt, its.t, temp)) {
cast()->fillIntersectionDetails(ray, its.t, temp, its);
return true;
}
}
}
return false;
}
/**
* \brief Test a ray for intersection against all primitives stored in the kd-tree
*/
bool rayIntersect(const Ray &ray) {
uint32_t temp[MTS_KD_INTERSECTION_TEMP];
Float mint, maxt, t;
if (m_aabb.rayIntersect(ray, mint, maxt)) {
if (ray.mint > mint) mint = ray.mint;
if (ray.maxt < maxt) maxt = ray.maxt;
if (EXPECT_TAKEN(maxt > mint))
if (rayIntersect<true>(ray, mint, maxt, t, temp))
return true;
}
return false;
}
protected:
/// Primitive classification during tree-construction
enum EClassificationResult {
///< Straddling primitive
/// Straddling primitive
EBothSides = 0,
///< Primitive is entirely on the left side of the split
/// Primitive is entirely on the left side of the split
ELeftSide = 1,
///< Primitive is entirely on the right side of the split
/// Primitive is entirely on the right side of the split
ERightSide = 2,
//< Edge events have been generated for the straddling primitive
/// Edge events have been generated for the straddling primitive
EBothSidesProcessed = 3
};
/// Documents the possible outcomes of a ray-primitive intersection
enum EIntersectionResult {
/// An intersection was found on the specified interval
EYes,
/** While an intersection could not be found on the specified
interval, the primitive might still intersect the ray if a
larger interval was considered */
ENo,
/// The primitive will never intersect the ray in question
ENever
};
/**
* \brief Describes the beginning or end of a primitive
* when projected onto a certain dimension.
@ -1197,6 +1282,25 @@ protected:
BOOST_STATIC_ASSERT(sizeof(KDNode) == 8);
/**
* \brief Hashed mailbox implementation
*/
struct MailBox {
MailBox() {
memset(entries, 0xFF, sizeof(index_type)*MTS_KD_MAILBOX_SIZE);
}
inline void put(index_type primIndex) {
entries[primIndex & MTS_KD_MAILBOX_MASK] = primIndex;
}
inline bool contains(index_type primIndex) const {
return entries[primIndex & MTS_KD_MAILBOX_MASK] == primIndex;
}
index_type entries[MTS_KD_MAILBOX_SIZE];
};
/**
* \brief SAH kd-tree builder thread
*/
@ -2333,6 +2437,29 @@ protected:
Vector m_binSize;
};
/// Ray traversal stack entry for incoherent ray tracing
struct KDStackEntry {
/* Pointer to the far child */
const KDNode * __restrict node;
/* Distance traveled along the ray (entry or exit) */
Float t;
/* Previous stack item */
uint32_t prev;
/* Associated point */
Point pb;
};
/**
* \brief Internal kd-tree traversal implementation
*/
template<bool shadowRay> FINLINE bool rayIntersect(const Ray &ray,
Float mint, Float maxt, Float &t, void *temp) {
KDStackEntry stack[MTS_KD_MAXDEPTH];
const KDNode * __restrict farChild,
* __restrict currNode = m_nodes;
return false;
}
private:
KDNode *m_nodes;
index_type *m_indices;

View File

@ -91,18 +91,67 @@ public:
m_triangleCount(triangleCount) {
}
inline AABB getAABB(index_type idx) const {
FINLINE AABB getAABB(index_type idx) const {
return m_triangles[idx].getAABB(m_vertexBuffer);
}
inline AABB getClippedAABB(index_type idx, const AABB &aabb) const {
FINLINE AABB getClippedAABB(index_type idx, const AABB &aabb) const {
return m_triangles[idx].getClippedAABB(m_vertexBuffer, aabb);
}
inline size_type getPrimitiveCount() const {
FINLINE size_type getPrimitiveCount() const {
return m_triangleCount;
}
FINLINE EIntersectionResult intersect(index_type idx, const Ray &ray, Float mint,
Float maxt, Float &t, void *tmp) {
Float tempT, tempU, tempV;
if (m_triangles[idx].rayIntersect(m_vertexBuffer, ray, tempU, tempV, tempT)) {
if (tempT >= mint && tempT <= maxt) {
index_type *indexPtr = reinterpret_cast<index_type *>(tmp);
Float *floatPtr = reinterpret_cast<Float *>(indexPtr + 1);
t = tempT;
*indexPtr = idx;
*floatPtr++ = tempU;
*floatPtr++ = tempV;
return EYes;
}
return ENo;
} else {
return ENever;
}
}
FINLINE void fillIntersectionDetails(const Ray &ray,
Float t, const void *tmp, Intersection &its) const {
its.p = ray(t);
const index_type *indexPtr = reinterpret_cast<const index_type *>(tmp);
const Float *floatPtr = reinterpret_cast<const Float *>(indexPtr + 1);
const Triangle &tri = m_triangles[*indexPtr];
const Vertex &v0 = m_vertexBuffer[tri.idx[0]];
const Vertex &v1 = m_vertexBuffer[tri.idx[1]];
const Vertex &v2 = m_vertexBuffer[tri.idx[2]];
const Float u = *floatPtr++, v = *floatPtr++;
const Vector b(1 - u - v, u, v);
its.uv = v0.uv * b.x + v1.uv * b.y + v2.uv * b.z;
its.dpdu = v0.dpdu * b.x + v1.dpdu * b.y + v2.dpdu * b.z;
its.dpdv = v0.dpdv * b.x + v1.dpdv * b.y + v2.dpdv * b.z;
its.geoFrame = Frame(normalize(cross(v1.p-v0.p, v2.p-v0.p)));
its.shFrame.n = normalize(v0.n * b.x + v1.n * b.y + v2.n * b.z);
its.shFrame.s = normalize(its.dpdu - its.shFrame.n
* dot(its.shFrame.n, its.dpdu));
its.shFrame.t = cross(its.shFrame.n, its.shFrame.s);
its.wi = its.toLocal(-ray.d);
its.hasUVPartials = false;
}
private:
const Triangle *m_triangles;
const Vertex *m_vertexBuffer;