various cleanups, started working on the smooth dielectric coating

metadata
Wenzel Jakob 2011-07-13 01:56:00 +02:00
parent aa1a9a1881
commit 42b92dac8f
18 changed files with 185 additions and 250 deletions

View File

@ -2,6 +2,12 @@
to be tested for consistency. This is done
using the testcase 'test_chisquare' -->
<scene>
<bsdf type="coating">
<float name="intIOR" value="1.5"/>
<float name="extIOR" value="1"/>
<bsdf type="diffuse"/>
</bsdf>
<!-- Test the smooth diffuse model -->
<bsdf type="diffuse"/>
@ -130,6 +136,6 @@
<!-- Test the mask model -->
<bsdf type="mask">
<bsdf type="lambertian"/>
<bsdf type="diffuse"/>
</bsdf>
</scene>

View File

@ -11,15 +11,14 @@ plugins += env.SharedLibrary('roughconductor', ['roughconductor.cpp'])
plugins += env.SharedLibrary('roughplastic', ['roughplastic.cpp'])
# Materials that act as modifiers
#plugins += env.SharedLibrary('coating', ['coating.cpp'])
plugins += env.SharedLibrary('twosided', ['twosided.cpp'])
plugins += env.SharedLibrary('mask', ['mask.cpp'])
plugins += env.SharedLibrary('mixture', ['mixture.cpp'])
plugins += env.SharedLibrary('coating', ['coating.cpp'])
# Other materials
plugins += env.SharedLibrary('phong', ['phong.cpp'])
plugins += env.SharedLibrary('ward', ['ward.cpp'])
plugins += env.SharedLibrary('phong', ['phong.cpp'])
plugins += env.SharedLibrary('irawan', ['irawan.cpp'])
plugins += env.SharedLibrary('difftrans', ['difftrans.cpp'])

View File

@ -17,39 +17,43 @@
*/
#include <mitsuba/render/bsdf.h>
#include <mitsuba/render/texture.h>
#include <mitsuba/hw/basicshader.h>
#include "ior.h"
MTS_NAMESPACE_BEGIN
/*! \plugin{coating}{Smooth dieletric coating}
/*! \plugin{coating}{Smooth dielectric coating}
* \order{9}
*
* \parameters{
* \parameter{intIOR}{\Float}{Interior index of refraction \default{1.5046}}
* \parameter{extIOR}{\Float}{Exterior index of refraction \default{1.0}}
* \parameter{intIOR}{\Float\Or\String}{Interior index of refraction specified
* numerically or using a known material name. \default{\texttt{bk7} / 1.5046}}
* \parameter{extIOR}{\Float\Or\String}{Exterior index of refraction specified
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
* }
* This class implements a smooth dielectric coating in the style of \cite{Weidlich2007Arbitrarily}.
*
* XXX cancel out cosine factors?
* XXX did I get the measure conversion terms right?
* XXX allow testing interface to verify delta components
* This class implements a smooth dielectric coating in the style of
* Weidlich and Wilkie \cite{Weidlich2007Arbitrarily}.
*/
class SmoothVarnish : public BSDF {
class SmoothCoating : public BSDF {
public:
SmoothVarnish(const Properties &props)
SmoothCoating(const Properties &props)
: BSDF(props) {
/* Specifies the internal index of refraction at the interface */
m_intIOR = props.getFloat("intIOR", 1.5046f);
m_intIOR = lookupIOR(props, "intIOR", "bk7");
/* Specifies the external index of refraction at the interface */
m_extIOR = props.getFloat("extIOR", 1);
m_extIOR = lookupIOR(props, "extIOR", "air");
/* Specifies the layer's thickness using the inverse units of sigmaT */
m_thickness = props.getFloat("thickness", 1);
/* Specifies the attenuation within the varnish layer */
m_sigmaT = new ConstantSpectrumTexture(
props.getSpectrum("sigmaT", Spectrum(0.0f)));
}
SmoothVarnish(Stream *stream, InstanceManager *manager)
SmoothCoating(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat();
@ -59,32 +63,22 @@ public:
configure();
}
virtual ~SmoothVarnish() {
delete[] m_type;
}
void configure() {
if (!m_nested)
Log(EError, "A child BSDF instance is required");
if (m_nested->getType() & BSDF::ETransmission)
Log(EError, "Tried to put a smooth varnish layer on top of a BSDF "
Log(EError, "Tried to put a smooth coating layer on top of a BSDF "
"with a transmission component -- this is currently not allowed!");
if (m_nested->getType() & BSDF::EDelta)
Log(EError, "Tried to put a smooth varnish layer on top of a material with a "
"Dirac delta distribution -- this is currently not allowed!");
if (m_type)
delete[] m_type;
m_componentCount = 1 + m_nested->getComponentCount();
m_type = new unsigned int[m_componentCount];
m_type[0] = EDeltaReflection | EFrontSide;
m_combinedType = m_type[0];
for (int i=0; i<m_nested->getComponentCount(); ++i) {
m_type[i+1] = m_nested->getType(i);
m_combinedType |= m_type[i+1];
}
m_components.clear();
for (int i=0; i<m_nested->getComponentCount(); ++i)
m_components.push_back(m_nested->getType(i));
m_components.push_back(EDeltaReflection | EFrontSide);
m_usesRayDifferentials = m_nested->usesRayDifferentials()
|| m_sigmaT->usesRayDifferentials();
BSDF::configure();
}
void serialize(Stream *stream, InstanceManager *manager) const {
@ -121,8 +115,8 @@ public:
return Vector(-eta*wi.x, -eta*wi.y, cosThetaT);
}
/// Fully complete local coordinate refraction routine
inline Vector refract(const Vector &wi, Float &Fr) const {
/// Refraction in local coordinates (full version)
inline Vector refract(const Vector &wi, Float &F) const {
Float cosThetaI = Frame::cosTheta(wi),
etaI = m_extIOR,
etaT = m_intIOR;
@ -141,72 +135,138 @@ public:
Float cosThetaT = 0;
if (sinThetaTSqr >= 1.0f) {
/* Total internal reflection */
Fr = 1.0f;
F = 1.0f;
return Vector(0.0f);
} else {
cosThetaT = std::sqrt(1.0f - sinThetaTSqr);
/* Compute the Fresnel refletance */
Fr = fresnelDielectric(std::abs(cosThetaI),
cosThetaT, etaI, etaT);
/* Compute the Fresnel transmittance */
F = fresnelDielectric(std::abs(Frame::cosTheta(wi)),
cosThetaT, m_extIOR, m_intIOR);
if (entering)
cosThetaT = -cosThetaT;
return Vector(-eta*wi.x, -eta*wi.y, cosThetaT);
return Vector(-eta*wi.x, -eta*wi.y,
entering ? -cosThetaT : cosThetaT);
}
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0)
return Spectrum(0.0f);
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1);
bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
if (measure == EDiscrete && sampleSpecular &&
std::abs(1-dot(reflect(bRec.wi), bRec.wo)) < Epsilon) {
return Spectrum(fresnel(
Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR));
} else if (sampleNested) {
Float R12, R21;
BSDFQueryRecord bRec2(bRec);
bRec2.wi = -refract(bRec.wi, R12);
bRec2.wo = -refract(bRec.wo, R21);
Assert(bRec2.wi.z >= 0);
Assert(bRec2.wo.z >= 0);
if (R12 == 1 || R21 == 1) /* Total internal reflection */
return Spectrum(0.0f);
Spectrum result = m_nested->eval(bRec2, measure)
* ((1-R12) * (1-R21));
Spectrum sigmaT = m_sigmaT->getValue(bRec.its) * m_thickness;
if (!sigmaT.isZero())
result *= (-sigmaT *
(1/std::abs(Frame::cosTheta(bRec2.wi)) +
1/std::abs(Frame::cosTheta(bRec2.wo)))).exp();
if (measure == ESolidAngle)
result *= Frame::cosTheta(bRec2.wo);
return result;
}
return Spectrum(0.0f);
}
Float pdf(const BSDFQueryRecord &bRec, EMeasure measure) const {
if (Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0)
return 0.0f;
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1);
bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
if (measure == EDiscrete && sampleSpecular &&
std::abs(1-dot(reflect(bRec.wi), bRec.wo)) < Epsilon) {
return sampleNested ? fresnel(
Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR) : 1.0f;
} else if (sampleNested) {
Float R12, R21;
BSDFQueryRecord bRec2(bRec);
bRec2.wi = -refract(bRec.wi, R12);
bRec2.wo = -refract(bRec.wo, R21);
if (R12 == 1 || R21 == 1) /* Total internal reflection */
return 0.0f;
Float pdf = m_nested->pdf(bRec2, measure);
if (measure == ESolidAngle) {
Float eta = m_extIOR / m_intIOR;
pdf /= eta * eta;
}
return sampleSpecular ? (pdf * (1-R12)) : pdf;
} else {
return 0.0f;
}
}
Spectrum sample(BSDFQueryRecord &bRec, Float &pdf, const Point2 &_sample) const {
bool sampleReflection = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1);
bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || (bRec.component > 0
&& bRec.component < m_nested->getComponentCount() + 1));
&& (bRec.component == -1 || bRec.component < (int) m_components.size()-1);
if ((!sampleNested && !sampleReflection) || Frame::cosTheta(bRec.wi) < 0)
if ((!sampleNested && !sampleNested) || Frame::cosTheta(bRec.wi) < 0)
return Spectrum(0.0f);
Float cosThetaI = Frame::cosTheta(bRec.wi),
etaI = m_extIOR,
etaT = m_intIOR;
/* Refract the incident direction and compute the Fresnel reflectance */
Float eta = m_extIOR / m_intIOR,
sinThetaTSqr = eta*eta * Frame::sinTheta2(bRec.wi),
R12, cosThetaT = 0;
/* Using Snell's law, calculate the squared sine of the
angle between the normal and the transmitted ray */
Float eta = etaI / etaT,
sinThetaTSqr = eta*eta * Frame::sinTheta2(bRec.wi);
Float Fr, FrOut, cosThetaT = 0;
if (sinThetaTSqr >= 1.0f) {
/* Total internal reflection */
Fr = 1.0f;
R12 = 1.0f; /* Total internal reflection */
} else {
cosThetaT = std::sqrt(1.0f - sinThetaTSqr);
/* Compute the Fresnel refletance */
Fr = fresnelDielectric(cosThetaI,
cosThetaT, etaI, etaT);
cosThetaT = -cosThetaT;
cosThetaT = -std::sqrt(1.0f - sinThetaTSqr);
R12 = fresnelDielectric(Frame::cosTheta(bRec.wi),
-cosThetaT, m_extIOR, m_intIOR);
}
Point2 sample(_sample);
if (sampleNested && sampleReflection) {
if (sample.x <= Fr) {
bRec.sampledComponent = 0;
if (sampleNested && sampleNested) {
if (sample.x <= R12) {
bRec.sampledComponent = m_components.size()-1;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
pdf = Fr * std::abs(Frame::cosTheta(bRec.wo));
return Spectrum(Fr);
pdf = R12;
return Spectrum(R12);
} else {
Vector wiBackup = bRec.wi;
bRec.wi = -refract(bRec.wi, eta, cosThetaT);
sample.x = (sample.x - Fr) / (1 - Fr);
// bRec.wi = -refract(bRec.wi, eta, cosThetaT);
bRec.wi = -refract(bRec.wi, R12);
sample.x = (sample.x - R12) / (1 - R12);
Spectrum result = m_nested->sample(bRec, pdf, sample);
if (result.isZero())
return Spectrum(0.0f);
bRec.sampledComponent++;
Spectrum sigmaT = m_sigmaT->getValue(bRec.its) * m_thickness;
if (!sigmaT.isZero())
@ -214,148 +274,47 @@ public:
(1/std::abs(Frame::cosTheta(bRec.wi)) +
1/std::abs(Frame::cosTheta(bRec.wo)))).exp();
Float cosThetaWoPrime = Frame::cosTheta(bRec.wo);
Float R21, cosThetaWoPrime = Frame::cosTheta(bRec.wo);
bRec.wi = wiBackup;
bRec.wo = refract(-bRec.wo, FrOut);
bRec.wo = refract(-bRec.wo, R21);
if (FrOut == 1)
if (R21 == 1.0f) /* Total internal reflection */
return Spectrum(0.0f);
pdf *= (1 - Fr) * eta * eta;
pdf *= 1 - R12;
if (BSDF::getMeasure(bRec.sampledType) == ESolidAngle)
pdf /= eta * eta;
result *= (1 - R12) * (1 - R21) * cosThetaWoPrime;
result *=
(1 - Fr) * (1 - FrOut)
* std::abs(cosThetaWoPrime *
/ Frame::cosTheta(bRec.wo));
return result;
}
} else if (sampleReflection) {
} else if (sampleSpecular) {
bRec.sampledComponent = 0;
bRec.sampledType = EDeltaReflection;
bRec.wo = reflect(bRec.wi);
pdf = std::abs(Frame::cosTheta(bRec.wo));
return Spectrum(Fr);
pdf = 1.0f;
return Spectrum(R12);
} else {
if (Fr == 1.0f) /* Total internal reflection */
return Spectrum(0.0f);
Vector wiBackup = bRec.wi;
bRec.wi = -refract(bRec.wi, eta, cosThetaT);
sample.x = (sample.x - Fr) / (1 - Fr);
Spectrum result = m_nested->sample(bRec, pdf, sample);
if (result.isZero())
return Spectrum(0.0f);
bRec.sampledComponent++;
Spectrum sigmaT = m_sigmaT->getValue(bRec.its) * m_thickness;
if (!sigmaT.isZero())
result *= (-sigmaT *
(1/std::abs(Frame::cosTheta(bRec.wi)) +
1/std::abs(Frame::cosTheta(bRec.wo)))).exp();
Float cosThetaWoPrime = Frame::cosTheta(bRec.wo);
bRec.wi = wiBackup;
bRec.wo = refract(-bRec.wo, FrOut);
if (FrOut == 1)
return Spectrum(0.0f);
pdf *= (1 - Fr) * eta * eta;
result *=
(1 - Fr) * (1 - FrOut)
* std::abs(cosThetaWoPrime *
/ Frame::cosTheta(bRec.wo));
return result;
// XXX not implemented
return Spectrum(0.0f);
}
}
Float pdfDelta(const BSDFQueryRecord &bRec) const {
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
Spectrum sample(BSDFQueryRecord &bRec, const Point2 &sample) const {
Float pdf;
Spectrum result = SmoothCoating::sample(bRec, pdf, sample);
if (Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0 || !sampleSpecular)
return 0.0f;
bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || (bRec.component > 0
&& bRec.component < m_nested->getComponentCount() + 1));
Float pdf = std::abs(Frame::cosTheta(bRec.wo));
if (sampleNested)
pdf *= fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR);
return pdf;
}
Spectrum fDelta(const BSDFQueryRecord &bRec) const {
bool sampleSpecular = (bRec.typeMask & EDeltaReflection)
&& (bRec.component == -1 || bRec.component == 0);
if (Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0 || !sampleSpecular)
if (result.isZero())
return Spectrum(0.0f);
return Spectrum(fresnel(Frame::cosTheta(bRec.wi), m_extIOR, m_intIOR));
}
Float pdf(const BSDFQueryRecord &bRec) const {
bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || (bRec.component > 0
&& bRec.component < m_nested->getComponentCount() + 1));
if (Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0 || !sampleNested)
return 0.0f;
Float T12, T21;
Vector wiPrime = -refract(bRec.wi, T12);
Vector woPrime = -refract(bRec.wo, T21);
if (T12 == 1 || T21 == 1) /* Total internal reflection */
return 0.0f;
BSDFQueryRecord bRec2(bRec);
if (bRec2.component != -1)
bRec2.component++;
bRec2.wi = wiPrime;
bRec2.wo = woPrime;
Float eta = m_extIOR / m_intIOR;
return m_nested->pdf(bRec2) * T12 * eta * eta;
}
Spectrum f(const BSDFQueryRecord &bRec) const {
bool sampleNested = (bRec.typeMask & m_nested->getType() & BSDF::EAll)
&& (bRec.component == -1 || (bRec.component > 0
&& bRec.component < m_nested->getComponentCount() + 1));
if (Frame::cosTheta(bRec.wi) <= 0 ||
Frame::cosTheta(bRec.wo) <= 0 || !sampleNested)
return Spectrum(0.0f);
Float T12, T21;
Vector wiPrime = -refract(bRec.wi, T12);
Vector woPrime = -refract(bRec.wo, T21);
if (T12 == 1 || T21 == 1) /* Total internal reflection */
return Spectrum(0.0f);
BSDFQueryRecord bRec2(bRec);
if (bRec2.component != -1)
bRec2.component++;
bRec2.wi = wiPrime;
bRec2.wo = woPrime;
return m_nested->f(bRec2) * T12 * T21;
else
return result / pdf;
}
std::string toString() const {
std::ostringstream oss;
oss << "SmoothVarnish[" << endl
oss << "SmoothCoating[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " intIOR = " << m_intIOR << "," << endl
<< " extIOR = " << m_extIOR << "," << endl
<< " sigmaT = " << indent(m_sigmaT->toString()) << "," << endl
@ -368,11 +327,11 @@ public:
MTS_DECLARE_CLASS()
private:
Float m_intIOR, m_extIOR;
ref<BSDF> m_nested;
ref<Texture> m_sigmaT;
ref<BSDF> m_nested;
Float m_thickness;
};
MTS_IMPLEMENT_CLASS_S(SmoothVarnish, false, BSDF)
MTS_EXPORT_PLUGIN(SmoothVarnish, "Smooth varnish layer");
MTS_IMPLEMENT_CLASS_S(SmoothCoating, false, BSDF)
MTS_EXPORT_PLUGIN(SmoothCoating, "Smooth varnish layer");
MTS_NAMESPACE_END

View File

@ -172,8 +172,6 @@ public:
configure();
}
virtual ~SmoothConductor() { }
void configure() {
/* Verify the input parameters and fix them if necessary */
m_specularReflectance = ensureEnergyConservation(

View File

@ -159,8 +159,6 @@ public:
m_specularTransmittance = static_cast<Texture *>(manager->getInstance(stream));
}
virtual ~SmoothDielectric() { }
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
@ -228,18 +226,15 @@ public:
Float eta = etaI / etaT,
sinThetaTSqr = eta*eta * Frame::sinTheta2(wi);
Float cosThetaT = 0;
if (sinThetaTSqr >= 1.0f) {
/* Total internal reflection */
return Vector(0.0f);
} else {
cosThetaT = std::sqrt(1.0f - sinThetaTSqr);
Float cosThetaT = std::sqrt(1.0f - sinThetaTSqr);
if (entering)
cosThetaT = -cosThetaT;
return Vector(-eta*wi.x, -eta*wi.y,
entering ? -cosThetaT : cosThetaT);
}
return Vector(-eta*wi.x, -eta*wi.y, cosThetaT);
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {

View File

@ -50,24 +50,22 @@ public:
m_transmittance = new ConstantSpectrumTexture(props.getSpectrum(
props.hasProperty("transmittance") ? "transmittance"
: "diffuseTransmittance", Spectrum(.5f)));
m_components.push_back(EDiffuseTransmission | EFrontSide | EBackSide);
m_usesRayDifferentials = false;
}
DiffuseTransmitter(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager) {
m_transmittance = static_cast<Texture *>(manager->getInstance(stream));
m_components.push_back(EDiffuseTransmission | EFrontSide | EBackSide);
m_usesRayDifferentials = m_transmittance->usesRayDifferentials();
}
virtual ~DiffuseTransmitter() { }
void configure() {
BSDF::configure();
/* Verify the input parameters and fix them if necessary */
m_transmittance = ensureEnergyConservation(m_transmittance, "transmittance", 1.0f);
m_components.clear();
m_components.push_back(EDiffuseTransmission | EFrontSide | EBackSide);
BSDF::configure();
}
Spectrum eval(const BSDFQueryRecord &bRec, EMeasure measure) const {

View File

@ -88,8 +88,6 @@ public:
configure();
}
virtual ~SmoothDiffuse() { }
void configure() {
/* Verify the input parameter and fix them if necessary */
m_reflectance = ensureEnergyConservation(m_reflectance, "reflectance", 1.0f);

View File

@ -121,8 +121,6 @@ public:
m_ksMultiplier = stream->readFloat();
}
virtual ~IrawanClothBRDF() { }
void configure() {
m_components.clear();
m_components.push_back(EGlossyReflection | EAnisotropic | EFrontSide);

View File

@ -31,13 +31,14 @@ MTS_NAMESPACE_BEGIN
* \rendering{Rendering without an opacity mask}
* {bsdf_mask_before.jpg}
* \rendering{Rendering \emph{with} an opacity mask (\lstref{mask-leaf})}
* {bsdf_mask_before.jpg}
* {bsdf_mask_after.jpg}
* }
* This plugin applies an opacity mask to add nested BSDF instance. It interpolates
* between perfectly transparent and completely opaque based on the \code{opacity}
* parameter.
*
* The transparency is implemented as a forward-facing Diract delta distribution.
* \vspace{5mm}
*
* \begin{xml}[caption=Material configuration for a transparent leaf,
* label=lst:mask-leaf]
@ -72,8 +73,6 @@ public:
configure();
}
virtual ~Mask() { }
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);
@ -84,6 +83,7 @@ public:
void configure() {
if (!m_nestedBSDF)
Log(EError, "A child BSDF is required");
m_components.clear();
for (int i=0; i<m_nestedBSDF->getComponentCount(); ++i)
m_components.push_back(m_nestedBSDF->getType(i));
m_components.push_back(EDeltaTransmission | EFrontSide | EBackSide);

View File

@ -51,8 +51,8 @@ MTS_NAMESPACE_BEGIN
*
* When using this plugin, note that the diffuse and specular reflectance
* components should add up to a value less than or equal to one (for each
* color channel). Otherwise, they will be scaled appropriately to ensure
* energy conservation.
* color channel). Otherwise, they will automatically be scaled appropriately
* to ensure energy conservation.
*/
class Phong : public BSDF {
public:
@ -75,8 +75,6 @@ public:
configure();
}
virtual ~Phong() { }
void configure() {
m_components.clear();
m_components.push_back(EGlossyReflection | EFrontSide);

View File

@ -85,8 +85,6 @@ public:
configure();
}
virtual ~SmoothPlastic() { }
void configure() {
/* Verify the input parameters and fix them if necessary */
m_specularReflectance = ensureEnergyConservation(

View File

@ -222,8 +222,6 @@ public:
BSDF::configure();
}
virtual ~RoughConductor() { }
/// Helper function: reflect \c wi with respect to a given surface normal
inline Vector reflect(const Vector &wi, const Normal &m) const {
return 2 * dot(wi, m) * Vector(m) - wi;

View File

@ -248,8 +248,6 @@ public:
BSDF::configure();
}
virtual ~RoughDielectric() { }
inline Float signum(Float value) const {
return (value < 0) ? -1.0f : 1.0f;
}

View File

@ -104,8 +104,6 @@ public:
configure();
}
virtual ~RoughDiffuse() { }
void configure() {
/* Verify the input parameter and fix them if necessary */
m_reflectance = ensureEnergyConservation(m_reflectance, "reflectance", 1.0f);

View File

@ -202,8 +202,6 @@ public:
BSDF::configure();
}
virtual ~RoughPlastic() { }
Spectrum getDiffuseReflectance(const Intersection &its) const {
return m_diffuseReflectance->getValue(its);
}

View File

@ -64,8 +64,6 @@ public:
configure();
}
virtual ~TwoSidedBRDF() { }
void serialize(Stream *stream, InstanceManager *manager) const {
BSDF::serialize(stream, manager);

View File

@ -58,7 +58,7 @@ MTS_NAMESPACE_BEGIN
* \begin{enumerate}[(i)]
* \item ``Measuring and Modeling Anisotropic Reflection''
* by Greg Ward \cite{Ward1992Measuring}
* \item ``Notes on the Ward BRDF'' by Bruce Walter\cite{Walter2005Notes}
* \item ``Notes on the Ward BRDF'' by Bruce Walter \cite{Walter2005Notes}
* \item ``An Improved Normalization for the Ward Reflectance Model''
* by Arne D\"ur \cite{Dur2006Improved}
* \item ``A New Ward BRDF Model with Bounded Albedo'' by
@ -78,8 +78,8 @@ MTS_NAMESPACE_BEGIN
*
* When using this plugin, note that the diffuse and specular reflectance
* components should add up to a value less than or equal to one (for each
* color channel). Otherwise, they will be scaled appropriately to ensure
* energy conservation.
* color channel). Otherwise, they will automatically be scaled appropriately
* to ensure energy conservation.
*/
class Ward : public BSDF {
public:
@ -134,8 +134,6 @@ public:
configure();
}
virtual ~Ward() { }
void configure() {
unsigned int extraFlags = 0;
if (m_alphaU != m_alphaV)

View File

@ -849,11 +849,11 @@ double normalQuantile(double p) {
Float hypot2(Float a, Float b) {
Float r;
if (std::abs(a) > std::abs(b)) {
r = b/a;
r = std::abs(a)*std::sqrt(1+r*r);
r = b / a;
r = std::abs(a) * std::sqrt(1 + r*r);
} else if (b != 0) {
r = a/b;
r = std::abs(b)*std::sqrt(1+r*r);
r = a / b;
r = std::abs(b) * std::sqrt(1 + r*r);
} else {
r = 0;
}