From 3d93215e81473afb945345f4f3491d50b4746933 Mon Sep 17 00:00:00 2001 From: Wenzel Jakob Date: Sun, 17 Feb 2013 18:28:53 -0500 Subject: [PATCH] fixed quaternion slerp to always use the 'short way', updated documentation --- doc/python.tex | 4 ++-- include/mitsuba/core/quat.h | 25 ++++++++++++++++++------- 2 files changed, 20 insertions(+), 9 deletions(-) diff --git a/doc/python.tex b/doc/python.tex index 995cd52a..0787b72b 100644 --- a/doc/python.tex +++ b/doc/python.tex @@ -362,8 +362,8 @@ sensor.setShutterOpenTime(1) stepSize = 5 for i in range(0,360 / stepSize): - rotationCur = Transform.rotate(Vector(0, 0, 1), i); - rotationNext = Transform.rotate(Vector(0, 0, 1), i+stepSize); + rotationCur = Transform.rotate(Vector(0, 0, 1), i*stepSize); + rotationNext = Transform.rotate(Vector(0, 0, 1), (i+1)*stepSize); trafoCur = Transform.lookAt(rotationCur * Point(0,-6,4), Point(0, 0, .5), rotationCur * Vector(0, 1, 0)) diff --git a/include/mitsuba/core/quat.h b/include/mitsuba/core/quat.h index 66067290..bd8577fd 100644 --- a/include/mitsuba/core/quat.h +++ b/include/mitsuba/core/quat.h @@ -84,6 +84,11 @@ template struct TQuaternion { return *this; } + /// Unary negation operator + TQuaternion operator-() const { + return TQuaternion(-v, -w); + } + /// Multiply the quaternion by the given scalar and return the result TQuaternion operator*(T f) const { return TQuaternion(v*f, w*f); @@ -230,20 +235,19 @@ template struct TQuaternion { * rotation matrix. */ static TQuaternion fromMatrix(const Matrix4x4 &m) { - /// Implementation from PBRT + // Implementation from PBRT, originally based on the matrix + // and quaternion FAQ (http://www.j3d.org/matrix_faq/matrfaq_latest.html) T trace = m(0, 0) + m(1, 1) + m(2, 2); TVector3 v; T w; - if (trace > 0.f) { - // Compute w from matrix trace, then xyz - // 4w^2 = m[0, 0] + m[1, 1] + m[2, 2] + m[3, 3] (but m[3, 3] == 1) + + if (trace > Epsilon) { T s = std::sqrt(trace + 1.0f); - w = s / 2.0f; + w = s * 0.5f; s = 0.5f / s; v.x = (m(2, 1) - m(1, 2)) * s; v.y = (m(0, 2) - m(2, 0)) * s; v.z = (m(1, 0) - m(0, 1)) * s; } else { - // Compute largest of $x$, $y$, or $z$, then remaining components const int nxt[3] = {1, 2, 0}; T q[3]; int i = 0; @@ -350,8 +354,15 @@ template inline TQuaternion normalize(const TQuaternion &q) { } template inline TQuaternion slerp(const TQuaternion &q1, - const TQuaternion &q2, Float t) { + const TQuaternion &_q2, Float t) { + TQuaternion q2(_q2); + T cosTheta = dot(q1, q2); + if (cosTheta < 0) { + /* Take the short way! */ + q2 = -q2; + cosTheta = -cosTheta; + } if (cosTheta > .9995f) { // Revert to plain linear interpolation return normalize(q1 * (1.0f - t) + q2 * t);