new branch for motion blur and spacetime kd-trees

metadata
Wenzel Jakob 2012-10-23 12:00:52 -04:00
parent 3d23857765
commit 3885a4c6f9
5 changed files with 745 additions and 2 deletions

View File

@ -1321,7 +1321,9 @@ protected:
return a.axis < b.axis;
if (a.pos != b.pos)
return a.pos < b.pos;
return a.type < b.type;
if (a.type != b.type)
return a.type < b.type;
return a.index < b.index;
}
};

View File

@ -63,7 +63,8 @@ public:
* Given a split on axis \a axis that produces children having extents
* \a leftWidth and \a rightWidth along \a axis, compute the probability
* of traversing the left and right child during a typical query
* operation.
* operation. In the case of the surface area heuristic, this is simply
* the ratio of surface areas.
*/
inline std::pair<Float, Float> operator()(int axis, Float leftWidth, Float rightWidth) const {
return std::pair<Float, Float>(

View File

@ -0,0 +1,304 @@
/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2012 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#if !defined(__SAH_KDTREE4_H)
#define __SAH_KDTREE4_H
#include <mitsuba/render/sahkdtree3.h>
MTS_NAMESPACE_BEGIN
typedef TAABB<Point4> AABB4;
/**
* \brief Implements the four-dimensional surface area heuristic for use
* by the \ref GenericKDTree construction algorithm.
*/
class SurfaceAreaHeuristic4 {
public:
/**
* \brief Initialize the surface area heuristic with the bounds of
* a parent node
*
* Precomputes some information so that traversal probabilities
* of potential split planes can be evaluated efficiently
*/
inline SurfaceAreaHeuristic4(const AABB4 &aabb) : m_aabb(aabb) {
const Vector4 extents(aabb.getExtents());
const Float temp = 1.0f / (extents.x * extents.y
+ extents.y*extents.z + extents.x*extents.z);
m_temp0 = Vector4(
extents.y * extents.z * temp,
extents.x * extents.z * temp,
extents.x * extents.y * temp,
0.0f);
m_temp1 = Vector4(
(extents.y + extents.z) * temp,
(extents.x + extents.z) * temp,
(extents.x + extents.y) * temp,
1.0f / extents.w);
}
/**
* Given a split on axis \a axis that produces children having extents
* \a leftWidth and \a rightWidth along \a axis, compute the probability
* of traversing the left and right child during a typical query
* operation.
*/
inline std::pair<Float, Float> operator()(int axis, Float leftWidth, Float rightWidth) const {
if (axis == 3 && m_temp1.w == std::numeric_limits<Float>::infinity()) {
return std::pair<Float, Float>(
std::numeric_limits<Float>::infinity(),
std::numeric_limits<Float>::infinity()
);
}
return std::pair<Float, Float>(
m_temp0[axis] + m_temp1[axis] * leftWidth,
m_temp0[axis] + m_temp1[axis] * rightWidth);
}
/**
* Compute the underlying quantity used by the tree construction
* heuristic. This is used to compute the final cost of a kd-tree.
*/
inline static Float getQuantity(const AABB4 &aabb) {
const Vector4 extents(aabb.getExtents());
Float result = 2 * (extents[0] * extents[1] + extents[1] * extents[2]
+ extents[2] * extents[0]);
if (extents[3] != 0)
result *= extents[3];
return result;
}
private:
Vector4 m_temp0, m_temp1;
AABB4 m_aabb;
};
/**
* This class specializes \ref GenericKDTree to a four-dimensional
* tree to be used for spacetime ray tracing. One additional function call
* must be implemented by subclasses:
*
* /// Check whether a primitive is intersected by the given ray.
* /// Some temporary space is supplied, which can be used to cache
* /// information about the intersection
* bool intersect(const Ray &ray, IndexType idx,
* Float mint, Float maxt, Float &t, void *tmp);
*
* This class implements an epsilon-free version of the optimized ray
* traversal algorithm (TA^B_{rec}), which is explained in Vlastimil
* Havran's PhD thesis "Heuristic Ray Shooting Algorithms".
*
* \author Wenzel Jakob
*/
template <typename Derived>
class SAHKDTree4D : public GenericKDTree<AABB4, SurfaceAreaHeuristic4, Derived> {
public:
typedef typename KDTreeBase<AABB4>::SizeType SizeType;
typedef typename KDTreeBase<AABB4>::IndexType IndexType;
typedef typename KDTreeBase<AABB4>::KDNode KDNode;
protected:
void buildInternal() {
SizeType primCount = this->cast()->getPrimitiveCount();
KDLog(EInfo, "Constructing a 4D SAH kd-tree (%i primitives) ..", primCount);
GenericKDTree<AABB4, SurfaceAreaHeuristic4, Derived>::buildInternal();
}
/**
* \brief Hashed mailbox implementation
*/
struct HashedMailbox {
inline HashedMailbox() {
memset(entries, 0xFF, sizeof(IndexType)*MTS_KD_MAILBOX_SIZE);
}
inline void put(IndexType primIndex) {
entries[primIndex & MTS_KD_MAILBOX_MASK] = primIndex;
}
inline bool contains(IndexType primIndex) const {
return entries[primIndex & MTS_KD_MAILBOX_MASK] == primIndex;
}
IndexType entries[MTS_KD_MAILBOX_SIZE];
};
/// Ray traversal stack entry for Havran-style incoherent ray tracing
struct KDStackEntryHavran {
/* Pointer to the far child */
const KDNode * __restrict node;
/* Distance traveled along the ray (entry or exit) */
Float t;
/* Previous stack item */
uint32_t prev;
/* Associated point */
Point p;
};
/**
* \brief Ray tracing kd-tree traversal loop (Havran variant)
*
* This is generally the most robust and fastest traversal routine
* of the methods implemented in this class.
*/
template<bool shadowRay> FINLINE
bool rayIntersectHavran(const Ray &ray, Float mint, Float maxt,
Float &t, void *temp) const {
KDStackEntryHavran stack[MTS_KD_MAXDEPTH];
#if 0
static const int prevAxisTable[] = { 2, 0, 1 };
static const int nextAxisTable[] = { 1, 2, 0 };
#endif
#if defined(MTS_KD_MAILBOX_ENABLED)
HashedMailbox mailbox;
#endif
/* Set up the entry point */
uint32_t enPt = 0;
stack[enPt].t = mint;
stack[enPt].p = ray(mint);
/* Set up the exit point */
uint32_t exPt = 1;
stack[exPt].t = maxt;
stack[exPt].p = ray(maxt);
stack[exPt].node = NULL;
bool foundIntersection = false;
const KDNode * __restrict currNode = this->m_nodes;
while (currNode != NULL) {
while (EXPECT_TAKEN(!currNode->isLeaf())) {
const Float splitVal = (Float) currNode->getSplit();
const int axis = currNode->getAxis();
const KDNode * __restrict farChild;
if (axis == 3) {
if (ray.time <= splitVal)
currNode = currNode->getLeft();
else
currNode = currNode->getRight();
continue;
} else if (stack[enPt].p[axis] <= splitVal) {
if (stack[exPt].p[axis] <= splitVal) {
/* Cases N1, N2, N3, P5, Z2 and Z3 (see thesis) */
currNode = currNode->getLeft();
continue;
}
/* Typo in Havran's thesis:
(it specifies "stack[exPt].p == splitVal", which
is clearly incorrect) */
if (stack[enPt].p[axis] == splitVal) {
/* Case Z1 */
currNode = currNode->getRight();
continue;
}
/* Case N4 */
currNode = currNode->getLeft();
farChild = currNode + 1; // getRight()
} else { /* stack[enPt].p[axis] > splitVal */
if (splitVal < stack[exPt].p[axis]) {
/* Cases P1, P2, P3 and N5 */
currNode = currNode->getRight();
continue;
}
/* Case P4 */
farChild = currNode->getLeft();
currNode = farChild + 1; // getRight()
}
/* Cases P4 and N4 -- calculate the distance to the split plane */
Float distToSplit = (splitVal - ray.o[axis]) * ray.dRcp[axis];
/* Set up a new exit point */
const uint32_t tmp = exPt++;
if (exPt == enPt) /* Do not overwrite the entry point */
++exPt;
KDAssert(exPt < MTS_KD_MAXDEPTH);
stack[exPt].prev = tmp;
stack[exPt].t = distToSplit;
stack[exPt].node = farChild;
#if 1
/* Intrestingly, this appears to be faster than the
original code with the prevAxis & nextAxis table */
stack[exPt].p = ray(distToSplit);
stack[exPt].p[axis] = splitVal;
#else
const int nextAxis = nextAxisTable[axis];
const int prevAxis = prevAxisTable[axis];
stack[exPt].p[axis] = splitVal;
stack[exPt].p[nextAxis] = ray.o[nextAxis]
+ distToSplit*ray.d[nextAxis];
stack[exPt].p[prevAxis] = ray.o[prevAxis]
+ distToSplit*ray.d[prevAxis];
#endif
}
/* Reached a leaf node */
for (IndexType entry=currNode->getPrimStart(),
last = currNode->getPrimEnd(); entry != last; entry++) {
const IndexType primIdx = this->m_indices[entry];
#if defined(MTS_KD_MAILBOX_ENABLED)
if (mailbox.contains(primIdx))
continue;
#endif
bool result;
if (!shadowRay)
result = this->cast()->intersect(ray, primIdx, mint, maxt, t, temp);
else
result = this->cast()->intersect(ray, primIdx, mint, maxt);
if (result) {
if (shadowRay)
return true;
maxt = t;
foundIntersection = true;
}
#if defined(MTS_KD_MAILBOX_ENABLED)
mailbox.put(primIdx);
#endif
}
if (stack[exPt].t > maxt)
break;
/* Pop from the stack and advance to the next node on the interval */
enPt = exPt;
currNode = stack[exPt].node;
exPt = stack[enPt].prev;
}
return foundIntersection;
}
};
MTS_NAMESPACE_END
#endif /* __SAH_KDTREE4_H */

View File

@ -12,5 +12,6 @@ plugins += env.SharedLibrary('hair', ['hair.cpp'])
plugins += env.SharedLibrary('shapegroup', ['shapegroup.cpp'])
plugins += env.SharedLibrary('instance', ['instance.cpp'])
plugins += env.SharedLibrary('animatedinstance', ['animatedinstance.cpp'])
plugins += env.SharedLibrary('pointcache', ['pointcache.cpp'])
Export('plugins')

435
src/shapes/pointcache.cpp Normal file
View File

@ -0,0 +1,435 @@
/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2012 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mitsuba/render/shape.h>
#include <mitsuba/render/sahkdtree4.h>
#include <mitsuba/render/trimesh.h>
#include <mitsuba/core/properties.h>
#include <mitsuba/core/fresolver.h>
#include <mitsuba/core/mstream.h>
#include <mitsuba/core/mmap.h>
#define SHAPE_PER_SEGMENT 1
#define NO_CLIPPING_SUPPORT 1
MTS_NAMESPACE_BEGIN
class SpaceTimeKDTree : public SAHKDTree4D<SpaceTimeKDTree> {
friend class GenericKDTree<AABB4, SurfaceAreaHeuristic4, SpaceTimeKDTree>;
friend class SAHKDTree4D<SpaceTimeKDTree>;
public:
/// Temporarily holds some intersection information
struct IntersectionCache {
Point p[3];
Float u, v;
};
SpaceTimeKDTree(const std::vector<Float> &frameTimes, std::vector<float *> &positions,
Triangle *triangles, size_t vertexCount, size_t triangleCount)
: m_frameTimes(frameTimes), m_positions(positions), m_triangles(triangles),
m_vertexCount(vertexCount), m_triangleCount(triangleCount) {
Log(EInfo, "Total amount of vertex data: %s",
memString(vertexCount*frameTimes.size()*sizeof(float)*3).c_str());
//setClip(false);
//setExactPrimitiveThreshold(10);
buildInternal();
/* Collect some statistics */
std::stack<const KDNode *> stack;
stack.push(m_nodes);
size_t spatialSplits = 0, timeSplits = 0;
while (!stack.empty()) {
const KDNode *node = stack.top();
stack.pop();
if (!node->isLeaf()) {
if (node->getAxis() == 3) {
timeSplits++;
} else {
spatialSplits++;
}
stack.push((const KDNode *) node->getLeft());
stack.push((const KDNode *) node->getRight());
}
}
KDLog(EInfo, "Spacetime kd-tree statistics");
KDLog(EInfo, " Time interval = [%f, %f]" , m_tightAABB.min.w, m_tightAABB.max.w);
KDLog(EInfo, " Spatial splits = " SIZE_T_FMT, spatialSplits);
KDLog(EInfo, " Time splits = " SIZE_T_FMT, timeSplits);
KDLog(EInfo, "");
m_spatialAABB = AABB(
Point(m_aabb.min.x, m_aabb.min.y, m_aabb.min.z),
Point(m_aabb.max.x, m_aabb.max.y, m_aabb.max.z)
);
}
/// Return one of the points stored in the point cache
inline Point getPoint(uint32_t frame, uint32_t index) const {
float *ptr = m_positions[frame] + index*3;
#if defined(__LITTLE_ENDIAN__)
return Point(
(Float) endianness_swap(ptr[0]),
(Float) endianness_swap(ptr[1]),
(Float) endianness_swap(ptr[2]));
#else
return Point((Float) ptr[0], (Float) ptr[1], (Float) ptr[2]);
#endif
}
// ========================================================================
// Implementation of functions required by the parent class
// ========================================================================
/// Return the total number of primitives that are organized in the tree
inline SizeType getPrimitiveCount() const {
#ifdef SHAPE_PER_SEGMENT
return m_triangleCount * (m_frameTimes.size() - 1);
#else
return m_triangleCount;
#endif
}
/// Return the 4D extents for one of the primitives contained in the tree
AABB4 getAABB(IndexType index) const {
#ifdef SHAPE_PER_SEGMENT
int frameIdx = index / m_triangleCount;
int triangleIdx = index % m_triangleCount;
const Triangle &tri = m_triangles[triangleIdx];
AABB aabb;
for (int i=0; i<3; ++i) {
aabb.expandBy(getPoint(frameIdx, tri.idx[i]));
aabb.expandBy(getPoint(frameIdx+1, tri.idx[i]));
}
return AABB4(
Point4(aabb.min.x, aabb.min.y, aabb.min.z, m_frameTimes[frameIdx]),
Point4(aabb.max.x, aabb.max.y, aabb.max.z, m_frameTimes[frameIdx+1])
);
#else
AABB aabb;
const Triangle &tri = m_triangles[index];
for (size_t i=0; i<m_frameTimes.size(); ++i)
for (int j=0; j<3; ++j)
aabb.expandBy(getPoint(i, tri.idx[j]));
return AABB4(
Point4(aabb.min.x, aabb.min.y, aabb.min.z, m_frameTimes[0]),
Point4(aabb.max.x, aabb.max.y, aabb.max.z, m_frameTimes[m_frameTimes.size()-1])
);
#endif
}
/// Return a clipped 4D AABB for one of the primitives contained in the tree
AABB4 getClippedAABB(int index, const AABB4 &box) const {
AABB clip(
Point(box.min.x, box.min.y, box.min.z),
Point(box.max.x, box.max.y, box.max.z)
);
#ifdef NO_CLIPPING_SUPPORT
AABB4 aabb = getAABB(index);
aabb.clip(box);
return aabb;
#elif SHAPE_PER_SEGMENT
int frameIdx = index / m_triangleCount;
int triangleIdx = index % m_triangleCount;
AABB aabb(m_triangles[triangleIdx].getClippedAABB(m_positions[frameIdx], clip)); /// XXX broken
aabb.expandBy(m_triangles[triangleIdx].getClippedAABB(m_positions[frameIdx+1], clip));
if (aabb.isValid())
return AABB4(
Point4(aabb.min.x, aabb.min.y, aabb.min.z, box.min.w),
Point4(aabb.max.x, aabb.max.y, aabb.max.z, box.max.w));
else
return AABB4();
#else
int startIndex = std::max((int) (std::lower_bound(m_frameTimes.begin(), m_frameTimes.end(),
box.min.w) - m_frameTimes.begin()) - 1, 0);
int endIndex = (int) (std::lower_bound(m_frameTimes.begin(), m_frameTimes.end(),
box.max.w) - m_frameTimes.begin());
AABB4 result;
const Triangle &tri = m_triangles[index];
for (int i=startIndex; i<=endIndex; ++i) {
Point p0 = getPoint(i, tri.idx[0]);
Point p1 = getPoint(i, tri.idx[1]);
Point p2 = getPoint(i, tri.idx[2]);
AABB aabb(Triangle::getClippedAABB(p0, p1, p2, clip));
if (aabb.isValid()) {
result.expandBy(Point4(aabb.min.x, aabb.min.y, aabb.min.z, m_frameTimes[i]));
result.expandBy(Point4(aabb.max.x, aabb.max.y, aabb.max.z, m_frameTimes[i]));
}
}
result.clip(box);
return result;
#endif
}
/// Cast a normal (i.e. non-shadow) ray against a specific animated triangle
inline bool intersect(const Ray &ray, IndexType idx,
Float mint, Float maxt, Float &t, void *tmp) const {
#if SHAPE_PER_SEGMENT
IndexType frameIdx = idx / m_triangleCount;
IndexType triangleIdx = idx % m_triangleCount;
#else
IndexType triangleIdx = idx;
IndexType frameIdx = (IndexType) std::max((int) (std::lower_bound(
m_frameTimes.begin(), m_frameTimes.end(), ray.time) -
m_frameTimes.begin()) - 1, 0);
#endif
const Triangle &tri = m_triangles[triangleIdx];
Float alpha = (ray.time - m_frameTimes[frameIdx])
/ (m_frameTimes[frameIdx + 1] - m_frameTimes[frameIdx]);
if (alpha < 0 || alpha > 1)
return false;
/* Compute interpolated positions */
Point p[3];
for (int i=0; i<3; ++i)
p[i] = (1 - alpha) * getPoint(frameIdx, tri.idx[i])
+ alpha * getPoint(frameIdx+1, tri.idx[i]);
Float tempU, tempV, tempT;
if (!Triangle::rayIntersect(p[0], p[1], p[2], ray, tempU, tempV, tempT))
return false;
if (tempT < mint || tempT > maxt)
return false;
if (tmp != NULL) {
IntersectionCache *cache =
static_cast<IntersectionCache *>(tmp);
t = tempT;
memcpy(cache->p, p, sizeof(Point)*3);
cache->u = tempU;
cache->v = tempV;
}
return true;
}
/// Cast a shadow ray against a specific triangle
inline bool intersect(const Ray &ray, IndexType idx,
Float mint, Float maxt) const {
Float tempT;
/* No optimized version for shadow rays yet */
return intersect(ray, idx, mint, maxt, tempT, NULL);
}
// ========================================================================
// Miscellaneous
// ========================================================================
/// Intersect a ray with all primitives stored in the kd-tree
inline bool rayIntersect(const Ray &ray, Float _mint, Float _maxt,
Float &t, void *temp) const {
Float tempT = std::numeric_limits<Float>::infinity();
Float mint, maxt;
if (m_spatialAABB.rayIntersect(ray, mint, maxt)) {
if (_mint > mint) mint = _mint;
if (_maxt < maxt) maxt = _maxt;
if (EXPECT_TAKEN(maxt > mint && ray.time >= m_aabb.min.w && ray.time <= m_aabb.max.w)) {
if (rayIntersectHavran<false>(ray, mint, maxt, tempT, temp)) {
t = tempT;
return true;
}
}
}
return false;
}
/**
* \brief Intersect a ray with all primitives stored in the kd-tree
* (Visiblity query version)
*/
inline bool rayIntersect(const Ray &ray, Float _mint, Float _maxt) const {
Float tempT = std::numeric_limits<Float>::infinity();
Float mint, maxt;
if (m_spatialAABB.rayIntersect(ray, mint, maxt)) {
if (_mint > mint) mint = _mint;
if (_maxt < maxt) maxt = _maxt;
if (EXPECT_TAKEN(maxt > mint && ray.time >= m_aabb.min.w && ray.time <= m_aabb.max.w))
if (rayIntersectHavran<true>(ray, mint, maxt, tempT, NULL))
return true;
}
return false;
}
inline const Triangle *getTriangles() const {
return m_triangles;
}
/// Return an AABB with the spatial extents
inline const AABB &getSpatialAABB() const {
return m_spatialAABB;
}
MTS_DECLARE_CLASS()
protected:
std::vector<Float> m_frameTimes;
std::vector<float *> m_positions;
Triangle *m_triangles;
size_t m_vertexCount;
size_t m_triangleCount;
AABB m_spatialAABB;
};
class PointCache : public Shape {
public:
PointCache(const Properties &props) : Shape(props) {
FileResolver *fResolver = Thread::getThread()->getFileResolver();
fs::path path = fResolver->resolve(props.getString("filename"));
if (path.extension() != ".mdd")
Log(EError, "Point cache files must have the extension \".mdd\"");
m_mmap = new MemoryMappedFile(path);
ref<MemoryStream> mStream = new MemoryStream((uint8_t *) m_mmap->getData(),
m_mmap->getSize());
mStream->setByteOrder(Stream::EBigEndian);
uint32_t frameCount = mStream->readUInt();
m_vertexCount = mStream->readUInt();
Log(EInfo, "Point cache has %i frames and %i vertices", frameCount, m_vertexCount);
for (uint32_t i=0; i<frameCount; ++i)
m_frameTimes.push_back((Float) mStream->readSingle());
for (uint32_t i=0; i<frameCount; ++i) {
m_positions.push_back(reinterpret_cast<float *>(mStream->getCurrentData()));
mStream->skip(m_vertexCount * 3 * sizeof(float));
}
Assert(mStream->getPos() == mStream->getSize());
}
PointCache(Stream *stream, InstanceManager *manager)
: Shape(stream, manager) {
/// TBD
}
void serialize(Stream *stream, InstanceManager *manager) const {
Shape::serialize(stream, manager);
/// TBD
}
void configure() {
Shape::configure();
if (m_mesh == NULL)
Log(EError, "A nested triangle mesh is required so that "
"connectivity information can be extracted!");
if (m_mesh->getVertexCount() != m_vertexCount)
Log(EError, "Point cache and nested geometry have mismatched "
"numbers of vertices!");
m_kdtree = new SpaceTimeKDTree(m_frameTimes, m_positions, m_mesh->getTriangles(),
m_vertexCount, m_mesh->getTriangleCount());
m_aabb = m_kdtree->getSpatialAABB();
}
bool rayIntersect(const Ray &ray, Float mint,
Float maxt, Float &t, void *temp) const {
return m_kdtree->rayIntersect(ray, mint, maxt, t, temp);
}
bool rayIntersect(const Ray &ray, Float mint, Float maxt) const {
return m_kdtree->rayIntersect(ray, mint, maxt);
}
void fillIntersectionRecord(const Ray &ray,
const void *temp, Intersection &its) const {
const SpaceTimeKDTree::IntersectionCache *cache
= reinterpret_cast<const SpaceTimeKDTree::IntersectionCache *>(temp);
const Vector b(1 - cache->u - cache->v, cache->u, cache->v);
const Point p0 = cache->p[0];
const Point p1 = cache->p[1];
const Point p2 = cache->p[2];
Normal faceNormal(cross(p1-p0, p2-p0));
Float length = faceNormal.length();
if (!faceNormal.isZero())
faceNormal /= length;
/* Just the basic attributes for now and geometric normals */
its.p = ray(its.t);
its.geoFrame = Frame(faceNormal);
its.shFrame = its.geoFrame;
its.wi = its.toLocal(-ray.d);
its.shape = this;
its.hasUVPartials = false;
its.time = ray.time;
}
AABB getAABB() const {
return m_kdtree->getSpatialAABB();
}
Float getSurfaceArea() const {
Log(EError, "PointCache::getSurfaceArea(): Not implemented.");
return -1;
}
size_t getPrimitiveCount() const {
return m_mesh->getTriangleCount();
}
size_t getEffectivePrimitiveCount() const {
return m_mesh->getTriangleCount();
}
void addChild(const std::string &name, ConfigurableObject *child) {
const Class *cClass = child->getClass();
if (cClass->derivesFrom(TriMesh::m_theClass)) {
Assert(m_mesh == NULL);
m_mesh = static_cast<TriMesh *>(child);
} else {
Shape::addChild(name, child);
}
}
std::string toString() const {
std::ostringstream oss;
oss << "PointCache[" << endl
<< "]";
return oss.str();
}
MTS_DECLARE_CLASS()
private:
ref<MemoryMappedFile> m_mmap;
ref<SpaceTimeKDTree> m_kdtree;
std::vector<Float> m_frameTimes;
std::vector<float *> m_positions;
ref<TriMesh> m_mesh;
uint32_t m_vertexCount;
AABB m_aabb;
};
MTS_IMPLEMENT_CLASS(SpaceTimeKDTree, false, KDTreeBase)
MTS_IMPLEMENT_CLASS_S(PointCache, false, Shape)
MTS_EXPORT_PLUGIN(PointCache, "Point cache");
MTS_NAMESPACE_END