direction interpolation tweaks, cleaned up the gridvolume step size determination
parent
1eabd9ce9a
commit
24976234b5
|
@ -680,6 +680,7 @@ template <typename T, int M1, int N1, int M2, int N2> inline Matrix<M1, N2, T>
|
|||
|
||||
/**
|
||||
* \brief Fast 3x3 eigenvalue decomposition
|
||||
*
|
||||
* \param m
|
||||
* Matrix in question -- will be replaced with the eigenvectors
|
||||
* \param lambda
|
||||
|
@ -689,6 +690,16 @@ template <typename T, int M1, int N1, int M2, int N2> inline Matrix<M1, N2, T>
|
|||
*/
|
||||
extern MTS_EXPORT_CORE bool eig3(Matrix3x3 &m, Float lambda[3]);
|
||||
|
||||
/**
|
||||
* \brief Fast non-iterative 3x3 eigenvalue decomposition
|
||||
*
|
||||
* \param m
|
||||
* Matrix in question -- will be replaced with the eigenvectors
|
||||
* \param lambda
|
||||
* Parameter used to returns the eigenvalues
|
||||
*/
|
||||
extern MTS_EXPORT_CORE void eig3_noniter(Matrix3x3 &m, Float lambda[3]);
|
||||
|
||||
MTS_NAMESPACE_END
|
||||
|
||||
#include "matrix.inl"
|
||||
|
|
|
@ -207,8 +207,8 @@ std::string Transform::toString() const {
|
|||
}
|
||||
|
||||
/**
|
||||
* \brief Tridiagonalizes a matrix using a Householder transformation
|
||||
* and returns the result.
|
||||
* \brief Tridiagonalizes a 3x3 matrix using a single
|
||||
* Householder transformation and returns the result.
|
||||
*
|
||||
* Based on "Geometric Tools" by David Eberly.
|
||||
*/
|
||||
|
@ -351,5 +351,246 @@ bool eig3(Matrix3x3 &m, Float lambda[3]) {
|
|||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the roots of the cubic polynomial. Double-precision arithmetic
|
||||
* is used to minimize the effects due to subtractive cancellation. The
|
||||
* roots are returned in increasing order.\
|
||||
*
|
||||
* Based on "Geometric Tools" by David Eberly.
|
||||
*/
|
||||
static void eig3_evals(const Matrix3x3 &A, double root[3]) {
|
||||
const double msInv3 = 1.0 / 3.0, msRoot3 = std::sqrt(3.0);
|
||||
|
||||
// Convert the unique matrix entries to double precision.
|
||||
double a00 = (double) A(0, 0), a01 = (double) A(0, 1), a02 = (double) A(0, 2),
|
||||
a11 = (double) A(1, 1), a12 = (double) A(1, 2), a22 = (double) A(2, 2);
|
||||
|
||||
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
|
||||
// eigenvalues are the roots to this equation, all guaranteed to be
|
||||
// real-valued, because the matrix is symmetric.
|
||||
double c0 = a00*a11*a22 + 2.0*a01*a02*a12 - a00*a12*a12 -
|
||||
a11*a02*a02 - a22*a01*a01;
|
||||
|
||||
double c1 = a00*a11 - a01*a01 + a00*a22 - a02*a02 +
|
||||
a11*a22 - a12*a12;
|
||||
|
||||
double c2 = a00 + a11 + a22;
|
||||
|
||||
// Construct the parameters used in classifying the roots of the equation
|
||||
// and in solving the equation for the roots in closed form.
|
||||
double c2Div3 = c2*msInv3;
|
||||
double aDiv3 = (c1 - c2*c2Div3)*msInv3;
|
||||
if (aDiv3 > 0.0)
|
||||
aDiv3 = 0.0;
|
||||
|
||||
double halfMB = 0.5*(c0 + c2Div3*(2.0*c2Div3*c2Div3 - c1));
|
||||
|
||||
double q = halfMB*halfMB + aDiv3*aDiv3*aDiv3;
|
||||
if (q > 0.0)
|
||||
q = 0.0;
|
||||
|
||||
// Compute the eigenvalues by solving for the roots of the polynomial.
|
||||
double magnitude = std::sqrt(-aDiv3);
|
||||
double angle = std::atan2(std::sqrt(-q), halfMB)*msInv3;
|
||||
double cs = std::cos(angle);
|
||||
double sn = std::sin(angle);
|
||||
double root0 = c2Div3 + 2.0*magnitude*cs;
|
||||
double root1 = c2Div3 - magnitude*(cs + msRoot3*sn);
|
||||
double root2 = c2Div3 - magnitude*(cs - msRoot3*sn);
|
||||
|
||||
// Sort in increasing order.
|
||||
if (root1 <= root0) {
|
||||
root[0] = root0;
|
||||
root[1] = root1;
|
||||
} else {
|
||||
root[0] = root1;
|
||||
root[1] = root0;
|
||||
}
|
||||
|
||||
if (root2 <= root[1]) {
|
||||
root[2] = root2;
|
||||
} else {
|
||||
root[2] = root[1];
|
||||
if (root2 <= root[0]) {
|
||||
root[1] = root2;
|
||||
} else {
|
||||
root[1] = root[0];
|
||||
root[0] = root2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine if M has positive rank. The maximum-magnitude entry of M is
|
||||
* returned. The row in which it is contained is also returned.
|
||||
*
|
||||
* Based on "Geometric Tools" by David Eberly.
|
||||
*/
|
||||
static bool eig3_rank(const Matrix3x3 &m, Float& maxEntry, Vector &maxRow) {
|
||||
// Locate the maximum-magnitude entry of the matrix.
|
||||
maxEntry = -1.0f;
|
||||
int maxRowIndex = -1;
|
||||
for (int row = 0; row < 3; ++row) {
|
||||
for (int col = row; col < 3; ++col) {
|
||||
Float absValue = std::abs(m(row, col));
|
||||
if (absValue > maxEntry) {
|
||||
maxEntry = absValue;
|
||||
maxRowIndex = row;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Return the row containing the maximum, to be used for eigenvector
|
||||
// construction.
|
||||
maxRow = m.row(maxRowIndex);
|
||||
|
||||
return maxEntry >= std::numeric_limits<Float>::epsilon();
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the eigenvectors
|
||||
*
|
||||
* Based on "Geometric Tools" by David Eberly.
|
||||
*/
|
||||
static void eig3_evecs(Matrix3x3& A, const Float lambda[3], const Vector& U2, int i0, int i1, int i2) {
|
||||
Vector U0, U1;
|
||||
coordinateSystem(normalize(U2), U0, U1);
|
||||
|
||||
// V[i2] = c0*U0 + c1*U1, c0^2 + c1^2=1
|
||||
// e2*V[i2] = c0*A*U0 + c1*A*U1
|
||||
// e2*c0 = c0*U0.Dot(A*U0) + c1*U0.Dot(A*U1) = d00*c0 + d01*c1
|
||||
// e2*c1 = c0*U1.Dot(A*U0) + c1*U1.Dot(A*U1) = d01*c0 + d11*c1
|
||||
Vector tmp = A*U0, evecs[3];
|
||||
|
||||
Float p00 = lambda[i2] - dot(U0, tmp),
|
||||
p01 = dot(U1, tmp),
|
||||
p11 = lambda[i2] - dot(U1, A*U1),
|
||||
maxValue = std::abs(p00),
|
||||
absValue = std::abs(p01),
|
||||
invLength;
|
||||
|
||||
if (absValue > maxValue)
|
||||
maxValue = absValue;
|
||||
|
||||
int row = 0;
|
||||
absValue = std::abs(p11);
|
||||
if (absValue > maxValue) {
|
||||
maxValue = absValue;
|
||||
row = 1;
|
||||
}
|
||||
|
||||
if (maxValue >= std::numeric_limits<Float>::epsilon()) {
|
||||
if (row == 0) {
|
||||
invLength = 1/std::sqrt(p00*p00 + p01*p01);
|
||||
p00 *= invLength;
|
||||
p01 *= invLength;
|
||||
evecs[i2] = p01*U0 + p00*U1;
|
||||
} else {
|
||||
invLength = 1/std::sqrt(p11*p11 + p01*p01);
|
||||
p11 *= invLength;
|
||||
p01 *= invLength;
|
||||
evecs[i2] = p11*U0 + p01*U1;
|
||||
}
|
||||
} else {
|
||||
if (row == 0)
|
||||
evecs[i2] = U1;
|
||||
else
|
||||
evecs[i2] = U0;
|
||||
}
|
||||
|
||||
// V[i0] = c0*U2 + c1*Cross(U2,V[i2]) = c0*R + c1*S
|
||||
// e0*V[i0] = c0*A*R + c1*A*S
|
||||
// e0*c0 = c0*R.Dot(A*R) + c1*R.Dot(A*S) = d00*c0 + d01*c1
|
||||
// e0*c1 = c0*S.Dot(A*R) + c1*S.Dot(A*S) = d01*c0 + d11*c1
|
||||
Vector S = cross(U2, evecs[i2]);
|
||||
tmp = A*U2;
|
||||
p00 = lambda[i0] - dot(U2, tmp);
|
||||
p01 = dot(S, tmp);
|
||||
p11 = lambda[i0] - dot(S, A*S);
|
||||
maxValue = std::abs(p00);
|
||||
row = 0;
|
||||
absValue = std::abs(p01);
|
||||
if (absValue > maxValue)
|
||||
maxValue = absValue;
|
||||
absValue = std::abs(p11);
|
||||
if (absValue > maxValue) {
|
||||
maxValue = absValue;
|
||||
row = 1;
|
||||
}
|
||||
|
||||
if (maxValue >= std::numeric_limits<Float>::epsilon()) {
|
||||
if (row == 0) {
|
||||
invLength = 1/std::sqrt(p00*p00 + p01*p01);
|
||||
p00 *= invLength;
|
||||
p01 *= invLength;
|
||||
evecs[i0] = p01*U2 + p00*S;
|
||||
} else {
|
||||
invLength = 1/std::sqrt(p11*p11 + p01*p01);
|
||||
p11 *= invLength;
|
||||
p01 *= invLength;
|
||||
evecs[i0] = p11*U2 + p01*S;
|
||||
}
|
||||
} else {
|
||||
if (row == 0)
|
||||
evecs[i0] = S;
|
||||
else
|
||||
evecs[i0] = U2;
|
||||
}
|
||||
|
||||
evecs[i1] = cross(evecs[i2], evecs[i0]);
|
||||
A = Matrix3x3(
|
||||
evecs[0].x, evecs[1].x, evecs[2].x,
|
||||
evecs[0].y, evecs[1].y, evecs[2].y,
|
||||
evecs[0].z, evecs[1].z, evecs[2].z
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Fast non-iterative 3x3 eigenvalue decomposition
|
||||
*
|
||||
* Based on "Geometric Tools" by David Eberly.
|
||||
*/
|
||||
void eig3_noniter(Matrix3x3 &A, Float lambda[3]) {
|
||||
// Compute the eigenvalues using double-precision arithmetic.
|
||||
double root[3];
|
||||
eig3_evals(A, root);
|
||||
lambda[0] = (Float) root[0];
|
||||
lambda[1] = (Float) root[1];
|
||||
lambda[2] = (Float) root[2];
|
||||
Matrix3x3 eigs;
|
||||
|
||||
Float maxEntry[3];
|
||||
Vector maxRow[3];
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
Matrix3x3 M(A);
|
||||
M(0, 0) -= lambda[i];
|
||||
M(1, 1) -= lambda[i];
|
||||
M(2, 2) -= lambda[i];
|
||||
if (!eig3_rank(M, maxEntry[i], maxRow[i])) {
|
||||
A.setIdentity();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
Float totalMax = maxEntry[0];
|
||||
int i = 0;
|
||||
if (maxEntry[1] > totalMax) {
|
||||
totalMax = maxEntry[1];
|
||||
i = 1;
|
||||
} if (maxEntry[2] > totalMax) {
|
||||
i = 2;
|
||||
}
|
||||
|
||||
if (i == 0) {
|
||||
maxRow[0] = normalize(maxRow[0]);
|
||||
eig3_evecs(A, lambda, maxRow[0], 1, 2, 0);
|
||||
} else if (i == 1) {
|
||||
maxRow[1] = normalize(maxRow[1]);
|
||||
eig3_evecs(A, lambda, maxRow[1], 2, 0, 1);
|
||||
} else {
|
||||
maxRow[2] = normalize(maxRow[2]);
|
||||
eig3_evecs(A, lambda, maxRow[2], 0, 1, 2);
|
||||
}
|
||||
}
|
||||
|
||||
MTS_NAMESPACE_END
|
||||
|
|
|
@ -181,7 +181,7 @@ public:
|
|||
return 0.0f;
|
||||
|
||||
/* Compute a suitable step size */
|
||||
uint32_t nSteps = (uint32_t) std::ceil(length / m_stepSize)*2;
|
||||
uint32_t nSteps = (uint32_t) std::ceil(length / m_stepSize);
|
||||
const Float stepSize = length/nSteps;
|
||||
const Vector increment = ray.d * stepSize;
|
||||
|
||||
|
@ -300,8 +300,9 @@ public:
|
|||
if (length < 1e-6f * maxComp)
|
||||
return 0.0f;
|
||||
|
||||
/* Compute a suitable step size */
|
||||
uint32_t nSteps = (uint32_t) std::ceil(length / m_stepSize);
|
||||
/* Compute a suitable step size (this routine samples the integrand
|
||||
between steps, hence the factor of 2) */
|
||||
uint32_t nSteps = (uint32_t) std::ceil(length / (2*m_stepSize));
|
||||
Float stepSize = length / nSteps,
|
||||
multiplier = (1.0f / 6.0f) * stepSize
|
||||
* m_densityMultiplier;
|
||||
|
|
|
@ -173,7 +173,7 @@ public:
|
|||
) * Transform::translate(-Vector(m_dataAABB.min)) * m_worldToVolume;
|
||||
m_stepSize = std::numeric_limits<Float>::infinity();
|
||||
for (int i=0; i<3; ++i)
|
||||
m_stepSize = std::min(m_stepSize, extents[i] / (Float) (m_res[i]-1));
|
||||
m_stepSize = 0.5f * std::min(m_stepSize, extents[i] / (Float) (m_res[i]-1));
|
||||
m_aabb.reset();
|
||||
for (int i=0; i<8; ++i)
|
||||
m_aabb.expandBy(m_volumeToWorld(m_dataAABB.getCorner(i)));
|
||||
|
@ -514,19 +514,15 @@ public:
|
|||
for (int j=0; j<3; ++j)
|
||||
tensor(i, j) += factor * d[k][i] * d[k][j];
|
||||
}
|
||||
|
||||
Float lambda[3];
|
||||
Matrix3x3 Q(tensor);
|
||||
if (!eig3(Q, lambda)) {
|
||||
Log(EWarn, "lookupVector(): Eigendecomposition failed!");
|
||||
return Vector(0.0f);
|
||||
}
|
||||
// Float specularity = 1-lambda[1]/lambda[0];
|
||||
value = Q.col(0);
|
||||
#if 0
|
||||
if (tensor.isZero())
|
||||
return Vector(0.0f);
|
||||
|
||||
#if 0
|
||||
Float lambda[3];
|
||||
eig3_noniter(tensor, lambda);
|
||||
value = tensor.col(0);
|
||||
#else
|
||||
|
||||
/* Square the structure tensor for faster convergence */
|
||||
tensor *= tensor;
|
||||
|
||||
|
@ -539,6 +535,8 @@ public:
|
|||
value = normalize(tensor * value);
|
||||
value = tensor * value;
|
||||
#endif
|
||||
|
||||
// Float specularity = 1-lambda[1]/lambda[0];
|
||||
#else
|
||||
#error Need to choose a vector interpolation method!
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue