fixed rough coating, renamed sssbrdf -> rmbrdf to avoid further confusion
parent
45d3be5ec5
commit
1a731394c8
Binary file not shown.
After Width: | Height: | Size: 182 KiB |
|
@ -24,7 +24,7 @@ plugins += env.SharedLibrary('phong', ['phong.cpp'])
|
||||||
plugins += env.SharedLibrary('difftrans', ['difftrans.cpp'])
|
plugins += env.SharedLibrary('difftrans', ['difftrans.cpp'])
|
||||||
plugins += env.SharedLibrary('hk', ['hk.cpp'])
|
plugins += env.SharedLibrary('hk', ['hk.cpp'])
|
||||||
plugins += env.SharedLibrary('dipolebrdf', ['dipolebrdf.cpp'])
|
plugins += env.SharedLibrary('dipolebrdf', ['dipolebrdf.cpp'])
|
||||||
plugins += env.SharedLibrary('sssbrdf', ['sssbrdf.cpp'])
|
plugins += env.SharedLibrary('rmbrdf', ['rmbrdf.cpp'])
|
||||||
|
|
||||||
# The Irawan-Marschner plugin uses a Boost::Spirit parser, which makes it
|
# The Irawan-Marschner plugin uses a Boost::Spirit parser, which makes it
|
||||||
# pretty heavy stuff to compile. Go easy on the compiler flags:
|
# pretty heavy stuff to compile. Go easy on the compiler flags:
|
||||||
|
|
|
@ -181,7 +181,7 @@ public:
|
||||||
Log(EError, "Only a single nested BRDF can be added!");
|
Log(EError, "Only a single nested BRDF can be added!");
|
||||||
m_nested = static_cast<BSDF *>(child);
|
m_nested = static_cast<BSDF *>(child);
|
||||||
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "sigmaA") {
|
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "sigmaA") {
|
||||||
m_sigmaA = static_cast<Texture *>(m_sigmaA);
|
m_sigmaA = static_cast<Texture *>(child);
|
||||||
} else {
|
} else {
|
||||||
BSDF::addChild(name, child);
|
BSDF::addChild(name, child);
|
||||||
}
|
}
|
||||||
|
|
|
@ -25,7 +25,7 @@
|
||||||
|
|
||||||
MTS_NAMESPACE_BEGIN
|
MTS_NAMESPACE_BEGIN
|
||||||
|
|
||||||
/*!\plugin{sssbrdf}{Subsurface scattering BRDF}
|
/*!\plugin{rmbrdf}{Random medium BRDF}
|
||||||
*
|
*
|
||||||
* \parameters{
|
* \parameters{
|
||||||
* \parameter{material}{\String}{Name of a material preset, see
|
* \parameter{material}{\String}{Name of a material preset, see
|
||||||
|
@ -46,20 +46,29 @@ MTS_NAMESPACE_BEGIN
|
||||||
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
|
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
|
||||||
* \parameter{g}{\Float\Or\String}{Specifies the phase function anisotropy
|
* \parameter{g}{\Float\Or\String}{Specifies the phase function anisotropy
|
||||||
* --- see the \pluginref{hg} plugin for details\default{0, i.e. isotropic}}
|
* --- see the \pluginref{hg} plugin for details\default{0, i.e. isotropic}}
|
||||||
* \parameter{alpha}{\Float}{
|
* \parameter{alpha}{\Float\Or\Texture}{
|
||||||
* Specifies the roughness of the unresolved surface micro-geometry.
|
* Specifies the roughness of the unresolved surface micro-geometry.
|
||||||
* \default{0.0, i.e. the surface has a smooth finish}
|
* \default{0.1, i.e. the surface has a slightly rough finish}
|
||||||
* }
|
* }
|
||||||
* }
|
* }
|
||||||
*
|
*
|
||||||
|
* \renderings{
|
||||||
|
* \rendering{Rendering using the whole milk material preset}{bsdf_sssbrdf}
|
||||||
|
* }
|
||||||
|
*
|
||||||
* This plugin implements a BRDF scattering model that emulates interactions
|
* This plugin implements a BRDF scattering model that emulates interactions
|
||||||
* with a participating medium embedded inside a dielectric layer. By
|
* with a random medium embedded inside a dielectric layer. By
|
||||||
* approximating these events using a BRDF, any scattered illumination
|
* approximating these events using a BRDF, any scattered illumination
|
||||||
* is assumed to exit the material \emph{directly} at the original point of incidence.
|
* is assumed to exit the material \emph{directly} at the original point of incidence.
|
||||||
* To account for internal light transport with \emph{different} incident
|
* To simulate actual subsurface scattering, refer to Sections~\ref{sec:media}
|
||||||
* and exitant positions, please refer to Sections~\ref{sec:media}
|
|
||||||
* and \ref{sec:subsurface}.
|
* and \ref{sec:subsurface}.
|
||||||
*
|
*
|
||||||
|
* Note that renderings with this BRDF will usually look very similar to what might
|
||||||
|
* also be obtained using \pluginref{plastic}. The plugin's reason for existance
|
||||||
|
* is that can be configured using parameters that are traditionally reserved
|
||||||
|
* for participating media.
|
||||||
|
*
|
||||||
|
* \subsection*{Implementation details}
|
||||||
* Internally, the model is implemented by instantiating a Hanrahan-Krueger
|
* Internally, the model is implemented by instantiating a Hanrahan-Krueger
|
||||||
* BSDF for single scattering in an infinitely thick layer together with
|
* BSDF for single scattering in an infinitely thick layer together with
|
||||||
* an approximate multiple scattering component based on Jensen's
|
* an approximate multiple scattering component based on Jensen's
|
||||||
|
@ -72,9 +81,9 @@ MTS_NAMESPACE_BEGIN
|
||||||
* in terms of the scattering and absorption coefficients \code{sigmaS}
|
* in terms of the scattering and absorption coefficients \code{sigmaS}
|
||||||
* and \code{sigmaA}.
|
* and \code{sigmaA}.
|
||||||
*/
|
*/
|
||||||
class SSSBRDF : public BSDF {
|
class RandomMediumBRDF : public BSDF {
|
||||||
public:
|
public:
|
||||||
SSSBRDF(const Properties &props)
|
RandomMediumBRDF(const Properties &props)
|
||||||
: BSDF(props), m_configured(false) {
|
: BSDF(props), m_configured(false) {
|
||||||
|
|
||||||
Spectrum sigmaS, sigmaA; // ignored here
|
Spectrum sigmaS, sigmaA; // ignored here
|
||||||
|
@ -85,7 +94,7 @@ public:
|
||||||
Properties hgProps("hg");
|
Properties hgProps("hg");
|
||||||
hgProps.setFloat("g", g);
|
hgProps.setFloat("g", g);
|
||||||
|
|
||||||
Float alpha = props.getFloat("alpha", 0.0f);
|
Float alpha = props.getFloat("alpha", 0.1f);
|
||||||
|
|
||||||
ref<PhaseFunction> hg = static_cast<PhaseFunction *> (
|
ref<PhaseFunction> hg = static_cast<PhaseFunction *> (
|
||||||
PluginManager::getInstance()->createObject(
|
PluginManager::getInstance()->createObject(
|
||||||
|
@ -129,7 +138,7 @@ public:
|
||||||
props.markQueried("alpha");
|
props.markQueried("alpha");
|
||||||
}
|
}
|
||||||
|
|
||||||
SSSBRDF(Stream *stream, InstanceManager *manager)
|
RandomMediumBRDF(Stream *stream, InstanceManager *manager)
|
||||||
: BSDF(stream, manager), m_configured(true) {
|
: BSDF(stream, manager), m_configured(true) {
|
||||||
m_coating = static_cast<BSDF *>(manager->getInstance(stream));
|
m_coating = static_cast<BSDF *>(manager->getInstance(stream));
|
||||||
m_hk = static_cast<BSDF *>(manager->getInstance(stream));
|
m_hk = static_cast<BSDF *>(manager->getInstance(stream));
|
||||||
|
@ -194,8 +203,14 @@ public:
|
||||||
|
|
||||||
void addChild(const std::string &name, ConfigurableObject *child) {
|
void addChild(const std::string &name, ConfigurableObject *child) {
|
||||||
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
|
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
|
||||||
m_hk->addChild(name, child);
|
if (name == "sigmaS" || name == "sigmaA" || name == "sigmaT" || name == "albedo") {
|
||||||
m_dipole->addChild(name, child);
|
m_hk->addChild(name, child);
|
||||||
|
m_dipole->addChild(name, child);
|
||||||
|
} else if (name == "alpha") {
|
||||||
|
m_coating->addChild(name, child);
|
||||||
|
} else {
|
||||||
|
BSDF::addChild(name, child);
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
BSDF::addChild(name, child);
|
BSDF::addChild(name, child);
|
||||||
}
|
}
|
||||||
|
@ -207,7 +222,7 @@ public:
|
||||||
|
|
||||||
std::string toString() const {
|
std::string toString() const {
|
||||||
std::ostringstream oss;
|
std::ostringstream oss;
|
||||||
oss << "SSSBRDF[" << endl
|
oss << "RandomMediumBRDF[" << endl
|
||||||
<< " name = \"" << m_name << "\"" << endl
|
<< " name = \"" << m_name << "\"" << endl
|
||||||
<< " nested = " << indent(m_coating->toString()) << endl
|
<< " nested = " << indent(m_coating->toString()) << endl
|
||||||
<< "]";
|
<< "]";
|
||||||
|
@ -223,6 +238,6 @@ private:
|
||||||
bool m_configured;
|
bool m_configured;
|
||||||
};
|
};
|
||||||
|
|
||||||
MTS_IMPLEMENT_CLASS_S(SSSBRDF, false, BSDF)
|
MTS_IMPLEMENT_CLASS_S(RandomMediumBRDF, false, BSDF)
|
||||||
MTS_EXPORT_PLUGIN(SSSBRDF, "Subsurface scattering BRDF");
|
MTS_EXPORT_PLUGIN(RandomMediumBRDF, "Random medium BRDF");
|
||||||
MTS_NAMESPACE_END
|
MTS_NAMESPACE_END
|
|
@ -45,7 +45,7 @@ MTS_NAMESPACE_BEGIN
|
||||||
* \vspace{-4mm}
|
* \vspace{-4mm}
|
||||||
* \end{enumerate}
|
* \end{enumerate}
|
||||||
* }
|
* }
|
||||||
* \parameter{alpha}{\Float}{
|
* \parameter{alpha}{\Float\Or\Texture}{
|
||||||
* Specifies the roughness of the unresolved surface micro-geometry.
|
* Specifies the roughness of the unresolved surface micro-geometry.
|
||||||
* When the Beckmann distribution is used, this parameter is equal to the
|
* When the Beckmann distribution is used, this parameter is equal to the
|
||||||
* \emph{root mean square} (RMS) slope of the microfacets.
|
* \emph{root mean square} (RMS) slope of the microfacets.
|
||||||
|
@ -121,7 +121,7 @@ public:
|
||||||
Log(EError, "The 'roughplastic' plugin currently does not support "
|
Log(EError, "The 'roughplastic' plugin currently does not support "
|
||||||
"anisotropic microfacet distributions!");
|
"anisotropic microfacet distributions!");
|
||||||
|
|
||||||
m_alpha = m_distribution.transformRoughness(
|
m_alpha = new ConstantFloatTexture(
|
||||||
props.getFloat("alpha", 0.1f));
|
props.getFloat("alpha", 0.1f));
|
||||||
|
|
||||||
m_specularSamplingWeight = 0.0f;
|
m_specularSamplingWeight = 0.0f;
|
||||||
|
@ -134,7 +134,7 @@ public:
|
||||||
);
|
);
|
||||||
m_nested = static_cast<BSDF *>(manager->getInstance(stream));
|
m_nested = static_cast<BSDF *>(manager->getInstance(stream));
|
||||||
m_sigmaA = static_cast<Texture *>(manager->getInstance(stream));
|
m_sigmaA = static_cast<Texture *>(manager->getInstance(stream));
|
||||||
m_alpha = stream->readFloat();
|
m_alpha = static_cast<Texture *>(manager->getInstance(stream));
|
||||||
m_intIOR = stream->readFloat();
|
m_intIOR = stream->readFloat();
|
||||||
m_extIOR = stream->readFloat();
|
m_extIOR = stream->readFloat();
|
||||||
m_thickness = stream->readFloat();
|
m_thickness = stream->readFloat();
|
||||||
|
@ -144,7 +144,7 @@ public:
|
||||||
|
|
||||||
void configure() {
|
void configure() {
|
||||||
unsigned int extraFlags = 0;
|
unsigned int extraFlags = 0;
|
||||||
if (!m_sigmaA->isConstant())
|
if (!m_sigmaA->isConstant() || !m_alpha->isConstant())
|
||||||
extraFlags |= ESpatiallyVarying;
|
extraFlags |= ESpatiallyVarying;
|
||||||
|
|
||||||
m_components.clear();
|
m_components.clear();
|
||||||
|
@ -154,7 +154,8 @@ public:
|
||||||
m_components.push_back(EGlossyReflection | EFrontSide | EBackSide);
|
m_components.push_back(EGlossyReflection | EFrontSide | EBackSide);
|
||||||
|
|
||||||
m_usesRayDifferentials = m_nested->usesRayDifferentials()
|
m_usesRayDifferentials = m_nested->usesRayDifferentials()
|
||||||
|| m_sigmaA->usesRayDifferentials();
|
|| m_sigmaA->usesRayDifferentials()
|
||||||
|
|| m_alpha->usesRayDifferentials();
|
||||||
|
|
||||||
/* Compute weights that further steer samples towards
|
/* Compute weights that further steer samples towards
|
||||||
the specular or nested components */
|
the specular or nested components */
|
||||||
|
@ -169,8 +170,18 @@ public:
|
||||||
m_roughTransmittance = new RoughTransmittance(
|
m_roughTransmittance = new RoughTransmittance(
|
||||||
m_distribution.getType());
|
m_distribution.getType());
|
||||||
|
|
||||||
|
Float eta = m_intIOR / m_extIOR;
|
||||||
|
m_roughTransmittance->checkEta(eta);
|
||||||
|
m_roughTransmittance->checkAlpha(m_alpha->getMinimum().average());
|
||||||
|
m_roughTransmittance->checkAlpha(m_alpha->getMaximum().average());
|
||||||
|
|
||||||
/* Reduce the rough transmittance data to a 2D slice */
|
/* Reduce the rough transmittance data to a 2D slice */
|
||||||
m_roughTransmittance->setEta(m_intIOR / m_extIOR);
|
m_roughTransmittance->setEta(eta);
|
||||||
|
|
||||||
|
/* If possible, even reduce it to a 1D slice */
|
||||||
|
if (m_alpha->isConstant())
|
||||||
|
m_roughTransmittance->setAlpha(
|
||||||
|
m_alpha->getValue(Intersection()).average());
|
||||||
}
|
}
|
||||||
|
|
||||||
BSDF::configure();
|
BSDF::configure();
|
||||||
|
@ -223,7 +234,11 @@ public:
|
||||||
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
|
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
|
||||||
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1)
|
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1)
|
||||||
&& measure == ESolidAngle;
|
&& measure == ESolidAngle;
|
||||||
|
|
||||||
|
/* Evaluate the roughness texture */
|
||||||
|
Float alpha = m_alpha->getValue(bRec.its).average();
|
||||||
|
Float alphaT = m_distribution.transformRoughness(alpha);
|
||||||
|
|
||||||
Spectrum result(0.0f);
|
Spectrum result(0.0f);
|
||||||
if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) {
|
if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) {
|
||||||
/* Calculate the reflection half-vector */
|
/* Calculate the reflection half-vector */
|
||||||
|
@ -231,13 +246,13 @@ public:
|
||||||
* signum(Frame::cosTheta(bRec.wo));
|
* signum(Frame::cosTheta(bRec.wo));
|
||||||
|
|
||||||
/* Evaluate the microsurface normal distribution */
|
/* Evaluate the microsurface normal distribution */
|
||||||
const Float D = m_distribution.eval(H, m_alpha);
|
const Float D = m_distribution.eval(H, alphaT);
|
||||||
|
|
||||||
/* Fresnel term */
|
/* Fresnel term */
|
||||||
const Float F = fresnel(absDot(bRec.wi, H), m_extIOR, m_intIOR);
|
const Float F = fresnel(absDot(bRec.wi, H), m_extIOR, m_intIOR);
|
||||||
|
|
||||||
/* Smith's shadow-masking function */
|
/* Smith's shadow-masking function */
|
||||||
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, m_alpha);
|
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, alphaT);
|
||||||
|
|
||||||
/* Calculate the specular reflection component */
|
/* Calculate the specular reflection component */
|
||||||
Float value = F * D * G /
|
Float value = F * D * G /
|
||||||
|
@ -252,8 +267,8 @@ public:
|
||||||
bRecInt.wo = refractTo(EInterior, bRec.wo);
|
bRecInt.wo = refractTo(EInterior, bRec.wo);
|
||||||
|
|
||||||
Spectrum nestedResult = m_nested->eval(bRecInt, measure) *
|
Spectrum nestedResult = m_nested->eval(bRecInt, measure) *
|
||||||
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi)), m_alpha) *
|
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi)), alpha) *
|
||||||
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wo)), m_alpha);
|
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wo)), alpha);
|
||||||
|
|
||||||
Spectrum sigmaA = m_sigmaA->getValue(bRec.its) * m_thickness;
|
Spectrum sigmaA = m_sigmaA->getValue(bRec.its) * m_thickness;
|
||||||
if (!sigmaA.isZero())
|
if (!sigmaA.isZero())
|
||||||
|
@ -286,11 +301,15 @@ public:
|
||||||
const Vector H = normalize(bRec.wo+bRec.wi)
|
const Vector H = normalize(bRec.wo+bRec.wi)
|
||||||
* signum(Frame::cosTheta(bRec.wo));
|
* signum(Frame::cosTheta(bRec.wo));
|
||||||
|
|
||||||
|
/* Evaluate the roughness texture */
|
||||||
|
Float alpha = m_alpha->getValue(bRec.its).average();
|
||||||
|
Float alphaT = m_distribution.transformRoughness(alpha);
|
||||||
|
|
||||||
Float probNested, probSpecular;
|
Float probNested, probSpecular;
|
||||||
if (hasSpecular && hasNested) {
|
if (hasSpecular && hasNested) {
|
||||||
/* Find the probability of sampling the specular component */
|
/* Find the probability of sampling the specular component */
|
||||||
probSpecular = 1-m_roughTransmittance->eval(
|
probSpecular = 1-m_roughTransmittance->eval(
|
||||||
std::abs(Frame::cosTheta(bRec.wi)), m_alpha);
|
std::abs(Frame::cosTheta(bRec.wi)), alpha);
|
||||||
|
|
||||||
/* Reallocate samples */
|
/* Reallocate samples */
|
||||||
probSpecular = (probSpecular*m_specularSamplingWeight) /
|
probSpecular = (probSpecular*m_specularSamplingWeight) /
|
||||||
|
@ -308,7 +327,7 @@ public:
|
||||||
const Float dwh_dwo = 1.0f / (4.0f * absDot(bRec.wo, H));
|
const Float dwh_dwo = 1.0f / (4.0f * absDot(bRec.wo, H));
|
||||||
|
|
||||||
/* Evaluate the microsurface normal distribution */
|
/* Evaluate the microsurface normal distribution */
|
||||||
const Float prob = m_distribution.pdf(H, m_alpha);
|
const Float prob = m_distribution.pdf(H, alphaT);
|
||||||
|
|
||||||
result = prob * dwh_dwo * probSpecular;
|
result = prob * dwh_dwo * probSpecular;
|
||||||
}
|
}
|
||||||
|
@ -341,10 +360,14 @@ public:
|
||||||
bool choseSpecular = hasSpecular;
|
bool choseSpecular = hasSpecular;
|
||||||
Point2 sample(_sample);
|
Point2 sample(_sample);
|
||||||
|
|
||||||
|
/* Evaluate the roughness texture */
|
||||||
|
Float alpha = m_alpha->getValue(bRec.its).average();
|
||||||
|
Float alphaT = m_distribution.transformRoughness(alpha);
|
||||||
|
|
||||||
Float probSpecular;
|
Float probSpecular;
|
||||||
if (hasSpecular && hasNested) {
|
if (hasSpecular && hasNested) {
|
||||||
/* Find the probability of sampling the diffuse component */
|
/* Find the probability of sampling the diffuse component */
|
||||||
probSpecular = 1 - m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi)), m_alpha);
|
probSpecular = 1 - m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi)), alpha);
|
||||||
|
|
||||||
/* Reallocate samples */
|
/* Reallocate samples */
|
||||||
probSpecular = (probSpecular*m_specularSamplingWeight) /
|
probSpecular = (probSpecular*m_specularSamplingWeight) /
|
||||||
|
@ -361,7 +384,7 @@ public:
|
||||||
|
|
||||||
if (choseSpecular) {
|
if (choseSpecular) {
|
||||||
/* Perfect specular reflection based on the microsurface normal */
|
/* Perfect specular reflection based on the microsurface normal */
|
||||||
Normal m = m_distribution.sample(sample, m_alpha);
|
Normal m = m_distribution.sample(sample, alphaT);
|
||||||
bRec.wo = reflect(bRec.wi, m);
|
bRec.wo = reflect(bRec.wi, m);
|
||||||
bRec.sampledComponent = m_components.size()-1;
|
bRec.sampledComponent = m_components.size()-1;
|
||||||
bRec.sampledType = EGlossyReflection;
|
bRec.sampledType = EGlossyReflection;
|
||||||
|
@ -402,7 +425,7 @@ public:
|
||||||
stream->writeUInt((uint32_t) m_distribution.getType());
|
stream->writeUInt((uint32_t) m_distribution.getType());
|
||||||
manager->serialize(stream, m_nested.get());
|
manager->serialize(stream, m_nested.get());
|
||||||
manager->serialize(stream, m_sigmaA.get());
|
manager->serialize(stream, m_sigmaA.get());
|
||||||
stream->writeFloat(m_alpha);
|
manager->serialize(stream, m_alpha.get());
|
||||||
stream->writeFloat(m_intIOR);
|
stream->writeFloat(m_intIOR);
|
||||||
stream->writeFloat(m_extIOR);
|
stream->writeFloat(m_extIOR);
|
||||||
stream->writeFloat(m_thickness);
|
stream->writeFloat(m_thickness);
|
||||||
|
@ -413,8 +436,13 @@ public:
|
||||||
if (m_nested != NULL)
|
if (m_nested != NULL)
|
||||||
Log(EError, "Only a single nested BRDF can be added!");
|
Log(EError, "Only a single nested BRDF can be added!");
|
||||||
m_nested = static_cast<BSDF *>(child);
|
m_nested = static_cast<BSDF *>(child);
|
||||||
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "sigmaA") {
|
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
|
||||||
m_sigmaA = static_cast<Texture *>(m_sigmaA);
|
if (name == "sigmaA")
|
||||||
|
m_sigmaA = static_cast<Texture *>(child);
|
||||||
|
else if (name == "alpha")
|
||||||
|
m_alpha = static_cast<Texture *>(child);
|
||||||
|
else
|
||||||
|
BSDF::addChild(name, child);
|
||||||
} else {
|
} else {
|
||||||
BSDF::addChild(name, child);
|
BSDF::addChild(name, child);
|
||||||
}
|
}
|
||||||
|
@ -425,8 +453,8 @@ public:
|
||||||
oss << "RoughCoating[" << endl
|
oss << "RoughCoating[" << endl
|
||||||
<< " name = \"" << getName() << "\"," << endl
|
<< " name = \"" << getName() << "\"," << endl
|
||||||
<< " distribution = " << m_distribution.toString() << "," << endl
|
<< " distribution = " << m_distribution.toString() << "," << endl
|
||||||
<< " alpha = " << m_alpha << "," << endl
|
<< " alpha = " << indent(m_alpha->toString()) << "," << endl
|
||||||
<< " sigmaA = " << m_sigmaA->toString() << "," << endl
|
<< " sigmaA = " << indent(m_sigmaA->toString()) << "," << endl
|
||||||
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
|
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
|
||||||
<< " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl
|
<< " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl
|
||||||
<< " intIOR = " << m_intIOR << "," << endl
|
<< " intIOR = " << m_intIOR << "," << endl
|
||||||
|
@ -443,8 +471,9 @@ private:
|
||||||
MicrofacetDistribution m_distribution;
|
MicrofacetDistribution m_distribution;
|
||||||
ref<RoughTransmittance> m_roughTransmittance;
|
ref<RoughTransmittance> m_roughTransmittance;
|
||||||
ref<Texture> m_sigmaA;
|
ref<Texture> m_sigmaA;
|
||||||
|
ref<Texture> m_alpha;
|
||||||
ref<BSDF> m_nested;
|
ref<BSDF> m_nested;
|
||||||
Float m_alpha, m_intIOR, m_extIOR;
|
Float m_intIOR, m_extIOR;
|
||||||
Float m_specularSamplingWeight;
|
Float m_specularSamplingWeight;
|
||||||
Float m_thickness;
|
Float m_thickness;
|
||||||
};
|
};
|
||||||
|
@ -460,46 +489,44 @@ private:
|
||||||
*/
|
*/
|
||||||
class RoughCoatingShader : public Shader {
|
class RoughCoatingShader : public Shader {
|
||||||
public:
|
public:
|
||||||
RoughCoatingShader(Renderer *renderer,
|
RoughCoatingShader(Renderer *renderer, const BSDF *nested,
|
||||||
const BSDF *nested,
|
const Texture *sigmaA, const Texture *alpha,
|
||||||
const Texture *sigmaA,
|
Float extIOR, Float intIOR) : Shader(renderer, EBSDFShader),
|
||||||
Float alpha, Float extIOR,
|
m_nested(nested), m_sigmaA(sigmaA), m_alpha(alpha),
|
||||||
Float intIOR) : Shader(renderer, EBSDFShader),
|
m_extIOR(extIOR), m_intIOR(intIOR) {
|
||||||
m_nested(nested),
|
|
||||||
m_sigmaA(sigmaA),
|
|
||||||
m_alpha(alpha), m_extIOR(extIOR), m_intIOR(intIOR) {
|
|
||||||
m_nestedShader = renderer->registerShaderForResource(m_nested.get());
|
m_nestedShader = renderer->registerShaderForResource(m_nested.get());
|
||||||
m_sigmaAShader = renderer->registerShaderForResource(m_sigmaA.get());
|
m_sigmaAShader = renderer->registerShaderForResource(m_sigmaA.get());
|
||||||
m_alpha = std::max(m_alpha, (Float) 0.2f);
|
m_alphaShader = renderer->registerShaderForResource(m_alpha.get());
|
||||||
m_R0 = fresnel(1.0f, m_extIOR, m_intIOR);
|
m_R0 = fresnel(1.0f, m_extIOR, m_intIOR);
|
||||||
m_eta = extIOR / intIOR;
|
m_eta = extIOR / intIOR;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool isComplete() const {
|
bool isComplete() const {
|
||||||
return m_nestedShader.get() != NULL
|
return m_nestedShader.get() != NULL
|
||||||
&& m_sigmaAShader.get() != NULL;
|
&& m_sigmaAShader.get() != NULL
|
||||||
|
&& m_alphaShader.get() != NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
void putDependencies(std::vector<Shader *> &deps) {
|
void putDependencies(std::vector<Shader *> &deps) {
|
||||||
deps.push_back(m_nestedShader.get());
|
deps.push_back(m_nestedShader.get());
|
||||||
deps.push_back(m_sigmaAShader.get());
|
deps.push_back(m_sigmaAShader.get());
|
||||||
|
deps.push_back(m_alphaShader.get());
|
||||||
}
|
}
|
||||||
|
|
||||||
void cleanup(Renderer *renderer) {
|
void cleanup(Renderer *renderer) {
|
||||||
renderer->unregisterShaderForResource(m_nested.get());
|
renderer->unregisterShaderForResource(m_nested.get());
|
||||||
renderer->unregisterShaderForResource(m_sigmaA.get());
|
renderer->unregisterShaderForResource(m_sigmaA.get());
|
||||||
|
renderer->unregisterShaderForResource(m_alpha.get());
|
||||||
}
|
}
|
||||||
|
|
||||||
void resolve(const GPUProgram *program, const std::string &evalName, std::vector<int> ¶meterIDs) const {
|
void resolve(const GPUProgram *program, const std::string &evalName, std::vector<int> ¶meterIDs) const {
|
||||||
parameterIDs.push_back(program->getParameterID(evalName + "_R0", false));
|
parameterIDs.push_back(program->getParameterID(evalName + "_R0", false));
|
||||||
parameterIDs.push_back(program->getParameterID(evalName + "_eta", false));
|
parameterIDs.push_back(program->getParameterID(evalName + "_eta", false));
|
||||||
parameterIDs.push_back(program->getParameterID(evalName + "_alpha", false));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void bind(GPUProgram *program, const std::vector<int> ¶meterIDs, int &textureUnitOffset) const {
|
void bind(GPUProgram *program, const std::vector<int> ¶meterIDs, int &textureUnitOffset) const {
|
||||||
program->setParameter(parameterIDs[0], m_R0);
|
program->setParameter(parameterIDs[0], m_R0);
|
||||||
program->setParameter(parameterIDs[1], m_eta);
|
program->setParameter(parameterIDs[1], m_eta);
|
||||||
program->setParameter(parameterIDs[2], m_alpha);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void generateCode(std::ostringstream &oss,
|
void generateCode(std::ostringstream &oss,
|
||||||
|
@ -507,7 +534,6 @@ public:
|
||||||
const std::vector<std::string> &depNames) const {
|
const std::vector<std::string> &depNames) const {
|
||||||
oss << "uniform float " << evalName << "_R0;" << endl
|
oss << "uniform float " << evalName << "_R0;" << endl
|
||||||
<< "uniform float " << evalName << "_eta;" << endl
|
<< "uniform float " << evalName << "_eta;" << endl
|
||||||
<< "uniform float " << evalName << "_alpha;" << endl
|
|
||||||
<< endl
|
<< endl
|
||||||
<< "float " << evalName << "_schlick(float ct) {" << endl
|
<< "float " << evalName << "_schlick(float ct) {" << endl
|
||||||
<< " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl
|
<< " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl
|
||||||
|
@ -529,13 +555,13 @@ public:
|
||||||
<< " }" << endl
|
<< " }" << endl
|
||||||
<< "}" << endl
|
<< "}" << endl
|
||||||
<< endl
|
<< endl
|
||||||
<< "float " << evalName << "_D(vec3 m) {" << endl
|
<< "float " << evalName << "_D(vec3 m, float alpha) {" << endl
|
||||||
<< " float ct = cosTheta(m);" << endl
|
<< " float ct = cosTheta(m);" << endl
|
||||||
<< " if (cosTheta(m) <= 0.0)" << endl
|
<< " if (cosTheta(m) <= 0.0)" << endl
|
||||||
<< " return 0.0;" << endl
|
<< " return 0.0;" << endl
|
||||||
<< " float ex = tanTheta(m) / " << evalName << "_alpha;" << endl
|
<< " float ex = tanTheta(m) / alpha;" << endl
|
||||||
<< " return exp(-(ex*ex)) / (pi * " << evalName << "_alpha" << endl
|
<< " return exp(-(ex*ex)) / (pi * alpha * alpha *" << endl
|
||||||
<< " * " << evalName << "_alpha * pow(cosTheta(m), 4.0));" << endl
|
<< " pow(cosTheta(m), 4.0));" << endl
|
||||||
<< "}" << endl
|
<< "}" << endl
|
||||||
<< endl
|
<< endl
|
||||||
<< "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl
|
<< "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl
|
||||||
|
@ -562,7 +588,8 @@ public:
|
||||||
<< " 1/abs(cosTheta(woPrime))));" << endl
|
<< " 1/abs(cosTheta(woPrime))));" << endl
|
||||||
<< " if (cosTheta(wi)*cosTheta(wo) > 0) {" << endl
|
<< " if (cosTheta(wi)*cosTheta(wo) > 0) {" << endl
|
||||||
<< " vec3 H = normalize(wi + wo);" << endl
|
<< " vec3 H = normalize(wi + wo);" << endl
|
||||||
<< " float D = " << evalName << "_D(H)" << ";" << endl
|
<< " float alpha = max(0.2, " << depNames[2] << "(uv)[0]);" << endl
|
||||||
|
<< " float D = " << evalName << "_D(H, alpha)" << ";" << endl
|
||||||
<< " float G = " << evalName << "_G(H, wi, wo);" << endl
|
<< " float G = " << evalName << "_G(H, wi, wo);" << endl
|
||||||
<< " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl
|
<< " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl
|
||||||
<< " result += vec3(F * D * G / (4*cosTheta(wi)));" << endl
|
<< " result += vec3(F * D * G / (4*cosTheta(wi)));" << endl
|
||||||
|
@ -581,12 +608,14 @@ private:
|
||||||
ref<Shader> m_nestedShader;
|
ref<Shader> m_nestedShader;
|
||||||
ref<const Texture> m_sigmaA;
|
ref<const Texture> m_sigmaA;
|
||||||
ref<Shader> m_sigmaAShader;
|
ref<Shader> m_sigmaAShader;
|
||||||
Float m_alpha, m_extIOR, m_intIOR, m_R0, m_eta;
|
ref<const Texture> m_alpha;
|
||||||
|
ref<Shader> m_alphaShader;
|
||||||
|
Float m_extIOR, m_intIOR, m_R0, m_eta;
|
||||||
};
|
};
|
||||||
|
|
||||||
Shader *RoughCoating::createShader(Renderer *renderer) const {
|
Shader *RoughCoating::createShader(Renderer *renderer) const {
|
||||||
return new RoughCoatingShader(renderer, m_nested.get(),
|
return new RoughCoatingShader(renderer, m_nested.get(),
|
||||||
m_sigmaA.get(), m_alpha, m_extIOR, m_intIOR);
|
m_sigmaA.get(), m_alpha.get(), m_extIOR, m_intIOR);
|
||||||
}
|
}
|
||||||
|
|
||||||
MTS_IMPLEMENT_CLASS(RoughCoatingShader, false, Shader)
|
MTS_IMPLEMENT_CLASS(RoughCoatingShader, false, Shader)
|
||||||
|
|
|
@ -237,10 +237,10 @@ public:
|
||||||
}
|
}
|
||||||
|
|
||||||
void configure() {
|
void configure() {
|
||||||
m_components.clear();
|
|
||||||
|
|
||||||
bool constAlpha = m_alpha->isConstant();
|
bool constAlpha = m_alpha->isConstant();
|
||||||
|
|
||||||
|
m_components.clear();
|
||||||
|
|
||||||
m_components.push_back(EGlossyReflection | EFrontSide
|
m_components.push_back(EGlossyReflection | EFrontSide
|
||||||
| ((constAlpha && m_specularReflectance->isConstant())
|
| ((constAlpha && m_specularReflectance->isConstant())
|
||||||
? 0 : ESpatiallyVarying));
|
? 0 : ESpatiallyVarying));
|
||||||
|
@ -286,7 +286,8 @@ public:
|
||||||
|
|
||||||
m_usesRayDifferentials =
|
m_usesRayDifferentials =
|
||||||
m_specularReflectance->usesRayDifferentials() ||
|
m_specularReflectance->usesRayDifferentials() ||
|
||||||
m_diffuseReflectance->usesRayDifferentials();
|
m_diffuseReflectance->usesRayDifferentials() ||
|
||||||
|
m_alpha->usesRayDifferentials();
|
||||||
|
|
||||||
BSDF::configure();
|
BSDF::configure();
|
||||||
}
|
}
|
||||||
|
|
|
@ -43,7 +43,7 @@ Shape::~Shape() { }
|
||||||
|
|
||||||
|
|
||||||
void Shape::configure() {
|
void Shape::configure() {
|
||||||
if (isLuminaire() && m_bsdf == NULL) {
|
if ((hasSubsurface() || isLuminaire()) && m_bsdf == NULL) {
|
||||||
/* Light source & no BSDF -> set an all-absorbing BSDF to turn
|
/* Light source & no BSDF -> set an all-absorbing BSDF to turn
|
||||||
the shape into an occluder. This is needed for the path
|
the shape into an occluder. This is needed for the path
|
||||||
tracer implementation to work correctly. */
|
tracer implementation to work correctly. */
|
||||||
|
|
Loading…
Reference in New Issue