fixed rough coating, renamed sssbrdf -> rmbrdf to avoid further confusion

metadata
Wenzel Jakob 2011-09-17 22:44:07 -04:00
parent 45d3be5ec5
commit 1a731394c8
7 changed files with 107 additions and 62 deletions

BIN
doc/images/bsdf_sssbrdf.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 182 KiB

View File

@ -24,7 +24,7 @@ plugins += env.SharedLibrary('phong', ['phong.cpp'])
plugins += env.SharedLibrary('difftrans', ['difftrans.cpp'])
plugins += env.SharedLibrary('hk', ['hk.cpp'])
plugins += env.SharedLibrary('dipolebrdf', ['dipolebrdf.cpp'])
plugins += env.SharedLibrary('sssbrdf', ['sssbrdf.cpp'])
plugins += env.SharedLibrary('rmbrdf', ['rmbrdf.cpp'])
# The Irawan-Marschner plugin uses a Boost::Spirit parser, which makes it
# pretty heavy stuff to compile. Go easy on the compiler flags:

View File

@ -181,7 +181,7 @@ public:
Log(EError, "Only a single nested BRDF can be added!");
m_nested = static_cast<BSDF *>(child);
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "sigmaA") {
m_sigmaA = static_cast<Texture *>(m_sigmaA);
m_sigmaA = static_cast<Texture *>(child);
} else {
BSDF::addChild(name, child);
}

View File

@ -25,7 +25,7 @@
MTS_NAMESPACE_BEGIN
/*!\plugin{sssbrdf}{Subsurface scattering BRDF}
/*!\plugin{rmbrdf}{Random medium BRDF}
*
* \parameters{
* \parameter{material}{\String}{Name of a material preset, see
@ -46,20 +46,29 @@ MTS_NAMESPACE_BEGIN
* numerically or using a known material name. \default{\texttt{air} / 1.000277}}
* \parameter{g}{\Float\Or\String}{Specifies the phase function anisotropy
* --- see the \pluginref{hg} plugin for details\default{0, i.e. isotropic}}
* \parameter{alpha}{\Float}{
* \parameter{alpha}{\Float\Or\Texture}{
* Specifies the roughness of the unresolved surface micro-geometry.
* \default{0.0, i.e. the surface has a smooth finish}
* \default{0.1, i.e. the surface has a slightly rough finish}
* }
* }
*
* \renderings{
* \rendering{Rendering using the whole milk material preset}{bsdf_sssbrdf}
* }
*
* This plugin implements a BRDF scattering model that emulates interactions
* with a participating medium embedded inside a dielectric layer. By
* with a random medium embedded inside a dielectric layer. By
* approximating these events using a BRDF, any scattered illumination
* is assumed to exit the material \emph{directly} at the original point of incidence.
* To account for internal light transport with \emph{different} incident
* and exitant positions, please refer to Sections~\ref{sec:media}
* To simulate actual subsurface scattering, refer to Sections~\ref{sec:media}
* and \ref{sec:subsurface}.
*
* Note that renderings with this BRDF will usually look very similar to what might
* also be obtained using \pluginref{plastic}. The plugin's reason for existance
* is that can be configured using parameters that are traditionally reserved
* for participating media.
*
* \subsection*{Implementation details}
* Internally, the model is implemented by instantiating a Hanrahan-Krueger
* BSDF for single scattering in an infinitely thick layer together with
* an approximate multiple scattering component based on Jensen's
@ -72,9 +81,9 @@ MTS_NAMESPACE_BEGIN
* in terms of the scattering and absorption coefficients \code{sigmaS}
* and \code{sigmaA}.
*/
class SSSBRDF : public BSDF {
class RandomMediumBRDF : public BSDF {
public:
SSSBRDF(const Properties &props)
RandomMediumBRDF(const Properties &props)
: BSDF(props), m_configured(false) {
Spectrum sigmaS, sigmaA; // ignored here
@ -85,7 +94,7 @@ public:
Properties hgProps("hg");
hgProps.setFloat("g", g);
Float alpha = props.getFloat("alpha", 0.0f);
Float alpha = props.getFloat("alpha", 0.1f);
ref<PhaseFunction> hg = static_cast<PhaseFunction *> (
PluginManager::getInstance()->createObject(
@ -129,7 +138,7 @@ public:
props.markQueried("alpha");
}
SSSBRDF(Stream *stream, InstanceManager *manager)
RandomMediumBRDF(Stream *stream, InstanceManager *manager)
: BSDF(stream, manager), m_configured(true) {
m_coating = static_cast<BSDF *>(manager->getInstance(stream));
m_hk = static_cast<BSDF *>(manager->getInstance(stream));
@ -194,8 +203,14 @@ public:
void addChild(const std::string &name, ConfigurableObject *child) {
if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
m_hk->addChild(name, child);
m_dipole->addChild(name, child);
if (name == "sigmaS" || name == "sigmaA" || name == "sigmaT" || name == "albedo") {
m_hk->addChild(name, child);
m_dipole->addChild(name, child);
} else if (name == "alpha") {
m_coating->addChild(name, child);
} else {
BSDF::addChild(name, child);
}
} else {
BSDF::addChild(name, child);
}
@ -207,7 +222,7 @@ public:
std::string toString() const {
std::ostringstream oss;
oss << "SSSBRDF[" << endl
oss << "RandomMediumBRDF[" << endl
<< " name = \"" << m_name << "\"" << endl
<< " nested = " << indent(m_coating->toString()) << endl
<< "]";
@ -223,6 +238,6 @@ private:
bool m_configured;
};
MTS_IMPLEMENT_CLASS_S(SSSBRDF, false, BSDF)
MTS_EXPORT_PLUGIN(SSSBRDF, "Subsurface scattering BRDF");
MTS_IMPLEMENT_CLASS_S(RandomMediumBRDF, false, BSDF)
MTS_EXPORT_PLUGIN(RandomMediumBRDF, "Random medium BRDF");
MTS_NAMESPACE_END

View File

@ -45,7 +45,7 @@ MTS_NAMESPACE_BEGIN
* \vspace{-4mm}
* \end{enumerate}
* }
* \parameter{alpha}{\Float}{
* \parameter{alpha}{\Float\Or\Texture}{
* Specifies the roughness of the unresolved surface micro-geometry.
* When the Beckmann distribution is used, this parameter is equal to the
* \emph{root mean square} (RMS) slope of the microfacets.
@ -121,7 +121,7 @@ public:
Log(EError, "The 'roughplastic' plugin currently does not support "
"anisotropic microfacet distributions!");
m_alpha = m_distribution.transformRoughness(
m_alpha = new ConstantFloatTexture(
props.getFloat("alpha", 0.1f));
m_specularSamplingWeight = 0.0f;
@ -134,7 +134,7 @@ public:
);
m_nested = static_cast<BSDF *>(manager->getInstance(stream));
m_sigmaA = static_cast<Texture *>(manager->getInstance(stream));
m_alpha = stream->readFloat();
m_alpha = static_cast<Texture *>(manager->getInstance(stream));
m_intIOR = stream->readFloat();
m_extIOR = stream->readFloat();
m_thickness = stream->readFloat();
@ -144,7 +144,7 @@ public:
void configure() {
unsigned int extraFlags = 0;
if (!m_sigmaA->isConstant())
if (!m_sigmaA->isConstant() || !m_alpha->isConstant())
extraFlags |= ESpatiallyVarying;
m_components.clear();
@ -154,7 +154,8 @@ public:
m_components.push_back(EGlossyReflection | EFrontSide | EBackSide);
m_usesRayDifferentials = m_nested->usesRayDifferentials()
|| m_sigmaA->usesRayDifferentials();
|| m_sigmaA->usesRayDifferentials()
|| m_alpha->usesRayDifferentials();
/* Compute weights that further steer samples towards
the specular or nested components */
@ -169,8 +170,18 @@ public:
m_roughTransmittance = new RoughTransmittance(
m_distribution.getType());
Float eta = m_intIOR / m_extIOR;
m_roughTransmittance->checkEta(eta);
m_roughTransmittance->checkAlpha(m_alpha->getMinimum().average());
m_roughTransmittance->checkAlpha(m_alpha->getMaximum().average());
/* Reduce the rough transmittance data to a 2D slice */
m_roughTransmittance->setEta(m_intIOR / m_extIOR);
m_roughTransmittance->setEta(eta);
/* If possible, even reduce it to a 1D slice */
if (m_alpha->isConstant())
m_roughTransmittance->setAlpha(
m_alpha->getValue(Intersection()).average());
}
BSDF::configure();
@ -223,7 +234,11 @@ public:
bool hasSpecular = (bRec.typeMask & EGlossyReflection)
&& (bRec.component == -1 || bRec.component == (int) m_components.size()-1)
&& measure == ESolidAngle;
/* Evaluate the roughness texture */
Float alpha = m_alpha->getValue(bRec.its).average();
Float alphaT = m_distribution.transformRoughness(alpha);
Spectrum result(0.0f);
if (hasSpecular && Frame::cosTheta(bRec.wo) * Frame::cosTheta(bRec.wi) > 0) {
/* Calculate the reflection half-vector */
@ -231,13 +246,13 @@ public:
* signum(Frame::cosTheta(bRec.wo));
/* Evaluate the microsurface normal distribution */
const Float D = m_distribution.eval(H, m_alpha);
const Float D = m_distribution.eval(H, alphaT);
/* Fresnel term */
const Float F = fresnel(absDot(bRec.wi, H), m_extIOR, m_intIOR);
/* Smith's shadow-masking function */
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, m_alpha);
const Float G = m_distribution.G(bRec.wi, bRec.wo, H, alphaT);
/* Calculate the specular reflection component */
Float value = F * D * G /
@ -252,8 +267,8 @@ public:
bRecInt.wo = refractTo(EInterior, bRec.wo);
Spectrum nestedResult = m_nested->eval(bRecInt, measure) *
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi)), m_alpha) *
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wo)), m_alpha);
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi)), alpha) *
m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wo)), alpha);
Spectrum sigmaA = m_sigmaA->getValue(bRec.its) * m_thickness;
if (!sigmaA.isZero())
@ -286,11 +301,15 @@ public:
const Vector H = normalize(bRec.wo+bRec.wi)
* signum(Frame::cosTheta(bRec.wo));
/* Evaluate the roughness texture */
Float alpha = m_alpha->getValue(bRec.its).average();
Float alphaT = m_distribution.transformRoughness(alpha);
Float probNested, probSpecular;
if (hasSpecular && hasNested) {
/* Find the probability of sampling the specular component */
probSpecular = 1-m_roughTransmittance->eval(
std::abs(Frame::cosTheta(bRec.wi)), m_alpha);
std::abs(Frame::cosTheta(bRec.wi)), alpha);
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
@ -308,7 +327,7 @@ public:
const Float dwh_dwo = 1.0f / (4.0f * absDot(bRec.wo, H));
/* Evaluate the microsurface normal distribution */
const Float prob = m_distribution.pdf(H, m_alpha);
const Float prob = m_distribution.pdf(H, alphaT);
result = prob * dwh_dwo * probSpecular;
}
@ -341,10 +360,14 @@ public:
bool choseSpecular = hasSpecular;
Point2 sample(_sample);
/* Evaluate the roughness texture */
Float alpha = m_alpha->getValue(bRec.its).average();
Float alphaT = m_distribution.transformRoughness(alpha);
Float probSpecular;
if (hasSpecular && hasNested) {
/* Find the probability of sampling the diffuse component */
probSpecular = 1 - m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi)), m_alpha);
probSpecular = 1 - m_roughTransmittance->eval(std::abs(Frame::cosTheta(bRec.wi)), alpha);
/* Reallocate samples */
probSpecular = (probSpecular*m_specularSamplingWeight) /
@ -361,7 +384,7 @@ public:
if (choseSpecular) {
/* Perfect specular reflection based on the microsurface normal */
Normal m = m_distribution.sample(sample, m_alpha);
Normal m = m_distribution.sample(sample, alphaT);
bRec.wo = reflect(bRec.wi, m);
bRec.sampledComponent = m_components.size()-1;
bRec.sampledType = EGlossyReflection;
@ -402,7 +425,7 @@ public:
stream->writeUInt((uint32_t) m_distribution.getType());
manager->serialize(stream, m_nested.get());
manager->serialize(stream, m_sigmaA.get());
stream->writeFloat(m_alpha);
manager->serialize(stream, m_alpha.get());
stream->writeFloat(m_intIOR);
stream->writeFloat(m_extIOR);
stream->writeFloat(m_thickness);
@ -413,8 +436,13 @@ public:
if (m_nested != NULL)
Log(EError, "Only a single nested BRDF can be added!");
m_nested = static_cast<BSDF *>(child);
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture)) && name == "sigmaA") {
m_sigmaA = static_cast<Texture *>(m_sigmaA);
} else if (child->getClass()->derivesFrom(MTS_CLASS(Texture))) {
if (name == "sigmaA")
m_sigmaA = static_cast<Texture *>(child);
else if (name == "alpha")
m_alpha = static_cast<Texture *>(child);
else
BSDF::addChild(name, child);
} else {
BSDF::addChild(name, child);
}
@ -425,8 +453,8 @@ public:
oss << "RoughCoating[" << endl
<< " name = \"" << getName() << "\"," << endl
<< " distribution = " << m_distribution.toString() << "," << endl
<< " alpha = " << m_alpha << "," << endl
<< " sigmaA = " << m_sigmaA->toString() << "," << endl
<< " alpha = " << indent(m_alpha->toString()) << "," << endl
<< " sigmaA = " << indent(m_sigmaA->toString()) << "," << endl
<< " specularSamplingWeight = " << m_specularSamplingWeight << "," << endl
<< " diffuseSamplingWeight = " << (1-m_specularSamplingWeight) << "," << endl
<< " intIOR = " << m_intIOR << "," << endl
@ -443,8 +471,9 @@ private:
MicrofacetDistribution m_distribution;
ref<RoughTransmittance> m_roughTransmittance;
ref<Texture> m_sigmaA;
ref<Texture> m_alpha;
ref<BSDF> m_nested;
Float m_alpha, m_intIOR, m_extIOR;
Float m_intIOR, m_extIOR;
Float m_specularSamplingWeight;
Float m_thickness;
};
@ -460,46 +489,44 @@ private:
*/
class RoughCoatingShader : public Shader {
public:
RoughCoatingShader(Renderer *renderer,
const BSDF *nested,
const Texture *sigmaA,
Float alpha, Float extIOR,
Float intIOR) : Shader(renderer, EBSDFShader),
m_nested(nested),
m_sigmaA(sigmaA),
m_alpha(alpha), m_extIOR(extIOR), m_intIOR(intIOR) {
RoughCoatingShader(Renderer *renderer, const BSDF *nested,
const Texture *sigmaA, const Texture *alpha,
Float extIOR, Float intIOR) : Shader(renderer, EBSDFShader),
m_nested(nested), m_sigmaA(sigmaA), m_alpha(alpha),
m_extIOR(extIOR), m_intIOR(intIOR) {
m_nestedShader = renderer->registerShaderForResource(m_nested.get());
m_sigmaAShader = renderer->registerShaderForResource(m_sigmaA.get());
m_alpha = std::max(m_alpha, (Float) 0.2f);
m_alphaShader = renderer->registerShaderForResource(m_alpha.get());
m_R0 = fresnel(1.0f, m_extIOR, m_intIOR);
m_eta = extIOR / intIOR;
}
bool isComplete() const {
return m_nestedShader.get() != NULL
&& m_sigmaAShader.get() != NULL;
&& m_sigmaAShader.get() != NULL
&& m_alphaShader.get() != NULL;
}
void putDependencies(std::vector<Shader *> &deps) {
deps.push_back(m_nestedShader.get());
deps.push_back(m_sigmaAShader.get());
deps.push_back(m_alphaShader.get());
}
void cleanup(Renderer *renderer) {
renderer->unregisterShaderForResource(m_nested.get());
renderer->unregisterShaderForResource(m_sigmaA.get());
renderer->unregisterShaderForResource(m_alpha.get());
}
void resolve(const GPUProgram *program, const std::string &evalName, std::vector<int> &parameterIDs) const {
parameterIDs.push_back(program->getParameterID(evalName + "_R0", false));
parameterIDs.push_back(program->getParameterID(evalName + "_eta", false));
parameterIDs.push_back(program->getParameterID(evalName + "_alpha", false));
}
void bind(GPUProgram *program, const std::vector<int> &parameterIDs, int &textureUnitOffset) const {
program->setParameter(parameterIDs[0], m_R0);
program->setParameter(parameterIDs[1], m_eta);
program->setParameter(parameterIDs[2], m_alpha);
}
void generateCode(std::ostringstream &oss,
@ -507,7 +534,6 @@ public:
const std::vector<std::string> &depNames) const {
oss << "uniform float " << evalName << "_R0;" << endl
<< "uniform float " << evalName << "_eta;" << endl
<< "uniform float " << evalName << "_alpha;" << endl
<< endl
<< "float " << evalName << "_schlick(float ct) {" << endl
<< " float ctSqr = ct*ct, ct5 = ctSqr*ctSqr*ct;" << endl
@ -529,13 +555,13 @@ public:
<< " }" << endl
<< "}" << endl
<< endl
<< "float " << evalName << "_D(vec3 m) {" << endl
<< "float " << evalName << "_D(vec3 m, float alpha) {" << endl
<< " float ct = cosTheta(m);" << endl
<< " if (cosTheta(m) <= 0.0)" << endl
<< " return 0.0;" << endl
<< " float ex = tanTheta(m) / " << evalName << "_alpha;" << endl
<< " return exp(-(ex*ex)) / (pi * " << evalName << "_alpha" << endl
<< " * " << evalName << "_alpha * pow(cosTheta(m), 4.0));" << endl
<< " float ex = tanTheta(m) / alpha;" << endl
<< " return exp(-(ex*ex)) / (pi * alpha * alpha *" << endl
<< " pow(cosTheta(m), 4.0));" << endl
<< "}" << endl
<< endl
<< "float " << evalName << "_G(vec3 m, vec3 wi, vec3 wo) {" << endl
@ -562,7 +588,8 @@ public:
<< " 1/abs(cosTheta(woPrime))));" << endl
<< " if (cosTheta(wi)*cosTheta(wo) > 0) {" << endl
<< " vec3 H = normalize(wi + wo);" << endl
<< " float D = " << evalName << "_D(H)" << ";" << endl
<< " float alpha = max(0.2, " << depNames[2] << "(uv)[0]);" << endl
<< " float D = " << evalName << "_D(H, alpha)" << ";" << endl
<< " float G = " << evalName << "_G(H, wi, wo);" << endl
<< " float F = " << evalName << "_schlick(1-dot(wi, H));" << endl
<< " result += vec3(F * D * G / (4*cosTheta(wi)));" << endl
@ -581,12 +608,14 @@ private:
ref<Shader> m_nestedShader;
ref<const Texture> m_sigmaA;
ref<Shader> m_sigmaAShader;
Float m_alpha, m_extIOR, m_intIOR, m_R0, m_eta;
ref<const Texture> m_alpha;
ref<Shader> m_alphaShader;
Float m_extIOR, m_intIOR, m_R0, m_eta;
};
Shader *RoughCoating::createShader(Renderer *renderer) const {
return new RoughCoatingShader(renderer, m_nested.get(),
m_sigmaA.get(), m_alpha, m_extIOR, m_intIOR);
m_sigmaA.get(), m_alpha.get(), m_extIOR, m_intIOR);
}
MTS_IMPLEMENT_CLASS(RoughCoatingShader, false, Shader)

View File

@ -237,10 +237,10 @@ public:
}
void configure() {
m_components.clear();
bool constAlpha = m_alpha->isConstant();
m_components.clear();
m_components.push_back(EGlossyReflection | EFrontSide
| ((constAlpha && m_specularReflectance->isConstant())
? 0 : ESpatiallyVarying));
@ -286,7 +286,8 @@ public:
m_usesRayDifferentials =
m_specularReflectance->usesRayDifferentials() ||
m_diffuseReflectance->usesRayDifferentials();
m_diffuseReflectance->usesRayDifferentials() ||
m_alpha->usesRayDifferentials();
BSDF::configure();
}

View File

@ -43,7 +43,7 @@ Shape::~Shape() { }
void Shape::configure() {
if (isLuminaire() && m_bsdf == NULL) {
if ((hasSubsurface() || isLuminaire()) && m_bsdf == NULL) {
/* Light source & no BSDF -> set an all-absorbing BSDF to turn
the shape into an occluder. This is needed for the path
tracer implementation to work correctly. */