mitsuba/doc/compiling.tex

120 lines
7.0 KiB
TeX
Raw Normal View History

\section{Compiling the renderer}
To compile Mitsuba, you will need a recent C++ compiler (e.g. GCC 4.1+ or
Visual Studio 2005+) and some additional libraries, which Mitsuba uses internally.
2010-08-11 06:38:22 +08:00
Builds on all three supported platforms are done using a unified system
based on SCons (\url{http://www.scons.org}), a flexible python-based
software construction tool. There are some minor differences between operating systems though: for
more details, please refer to one of the next sections depending on which one you use.
\subsection{Common steps}
To get started, you will need to download a recent version of Mitsuba: make sure that you have the Mercurial (\url{http://mercurial.selenic.com/})
versioning system installed and enter the following at the command prompt:
\begin{shell}
$\texttt{\$}$ hg clone https://www.mitsuba-renderer.org/hg/mitsuba
\end{shell}
On Windows, you can instead use the more convenient TortoiseHG shell extension (\url{http://tortoisehg.bitbucket.org/})
to do this directly from the Explorer.
Common to all platforms is that a build configuration file must be chosen: amongst the
following, please copy the best matching file into a new file to the root of the Mitsuba
directory and rename it into \code{config.py}.
\begin{shell}
config/config-linux.py
config/config-darwin-x86_64.py
config/config-darwin-x86.py
config/config-darwin-universal.py
config/config-msvc2005-win32.py
config/config-msvc2005-win64.py
\end{shell}
Some minor adjustments may have to be made to this file based on your configuration.
You may also set adjust certain compilation flags here:
\begin{description}
\item[\texttt{MTS\_DEBUG}] Enable assertions etc. Usually a good idea.
\item[\texttt{SINGLE\_PRECISION}] Do all computation in single precision. This is usually sufficient.
\item[\texttt{DOUBLE\_PRECISION}] Do all computation in double precision. Incompatible with
\texttt{MTS\_SSE}, \texttt{MTS\_HAS\_COHERENT\_RT}, and \texttt{MTS\_DEBUG\_FP}.
\item[\texttt{MTS\_SSE}]Activate optimized SSE routines.
\item[\texttt{MTS\_HAS\_COHERENT\_RT}]Include coherent ray tracing support (depends on \texttt{MTS\_SSE}).
\item[\texttt{MTS\_DEBUG\_FP}]Generated NaNs will cause floating point exceptions, which can be caught in a debugger. Warning: This is slow!
\end{description}
All default configurations use the flags \code{MTS\_DEBUG}, \code{SINGLE\_PRECISION}, \code{MTS\_SSE}, \code{MTS\_HAS\_COHERENT\_RT}.
Initially, it is a good idea to just leave the configuration the way it is.
\subsection{Building on Linux}
On Linux, you'll first need to install a whole bunch of dependencies. It is assumed here
that you are using Ubuntu Linux, hence some of the package may be named differently if you are
using another distribution.
First, run
\begin{shell}
$\text{\$}$ apt-get install build-essential scons qt4-dev-tools scons libpng12-dev libjpeg62-dev libilmbase-dev libopenexr-dev libxerces-c2-dev libboost-dev libglewmx1.5-dev libxxf86vm-dev libboost-system-dev libboost-filesystem-dev
\end{shell}
To get COLLADA support, you will also need to install the \texttt{collada-dom} packages or build them from scratch. Here, we install the \code{x86\_64} binaries and development headers included with Mitsuba:
\begin{shell}
$\text{\$}$ dpkg --install tools/linux/collada-dom2.2_2.2-1_amd64.deb tools/linux/collada-dom-dev_2.2-1_amd64.deb
\end{shell}
Afterwards, simply run
\begin{shell}
$\text{\$}$ scons
\end{shell}
inside the Mitsuba directory. In the case that you have multiple processors, you might want to parallelize the build by appending \code{-j }\emph{core count} to the command.
If all goes well, SCons should finish successfully within a few minutes:
\begin{shell}
scons: $\texttt{done}$ building targets.
\end{shell}
To be able to run the renderer from the command line, you will also have to import it into your path:
\begin{shell}
$\text{\$}$ . setpath.sh
\end{shell}
(note the period at the beginning -- this assumes that you are using \code{bash}).
\subsection{Building on Windows}
This section assumes that Visual Studio 2008 is installed, but the instructions should work equally well with other versions.
On the Windows platform, Mitsuba already includes most of the dependencies in precompiled form.
You will still need to set up a few things though: first, you need to install Python
(\url{www.python.org}) and SCons (\url{http://www.scons.org}) and ensure that they are contained
in the \code{\%PATH\%} environment variable so that entering \code{scons} on the command prompt
(\code{cmd.exe}) launches the build system (it will complain about not finding a project file though).
\begin{shell}
C:\Users\Wenzel>scons
scons: ** No SConstruct file found.
\end{shell}
Next, install Qt (\url{http://qt.nokia.com/downloads/windows-cpp-vs2008} -- you should get the release for Visual Studio 2008). Again, you need to make sure that the
Qt utilities are reachable through the \code{\%PATH\%} environment variable so that you can for example launch \code{moc.exe} from the command line.
Because the official release of Qt currently only contains 32-bit binaries, you will accordingly have to
build Mitsuba in 32-bit mode (i.e. you should use the configuration file \code{config-msvc2005-win32.py}). If you would rather like compile it in 64-bit mode, you have to create
your own 64-bit Qt binaries.
Having installed these dependencies, run the ``Visual Studio 2008 Command
Prompt'' from the Start Menu (pick the \code{x86} version if you have the choice beetween \code{x86} and \code{x64}). Afterwards,
navigate to the Mitsuba directory and run \code{scons}.
In the case that you have multiple processors, you might want to parallelize the build by appending \code{-j }\emph{core count} to the \code{scons} command.
2010-08-11 06:38:22 +08:00
If all goes well, the build process will finish successfully after a few
minutes. In comparison to the other platforms, you don't have to run the \code{setpath.sh} script at this point.
All binaries are now located in the \code{dist} directory, and they should be executed directly from there.
\subsection{Building on Mac OS X}
On Mac OS X, you will need to install both scons (\code{www.scons.org}) and
a recent release of XCode. You will also need to get Qt 4.7.0 Beta 2 or a newer version.
As of this writing, 4.7.0 Beta 2 is still the most recent release and can be found here: \url{http://qt.nokia.com/developer/qt-qtcreator-prerelease#download}
--- make sure that you get the normal Cocoa release (i.e. \emph{not} the one based on Carbon). All of the
other dependencies are already included in precompiled form.
Now open a Terminal and run
\begin{shell}
$\text{\$}$ scons
\end{shell}
inside the Mitsuba directory. In the case that you have multiple processors, you might want to parallelize the build by appending \code{-j }\emph{core count} to the command.
If all goes well, SCons should finish successfully within a few minutes:
\begin{shell}
scons: $\texttt{done}$ building targets.
\end{shell}
To be able to run the renderer from the command line, you will have to import it into your path:
\begin{shell}
$\text{\$}$ . setpath.sh
\end{shell}
(note the period at the beginning -- this assumes that you are using \code{bash}).