mitsuba/src/bsdfs/microfacet.h

352 lines
10 KiB
C
Raw Normal View History

2011-07-06 23:52:02 +08:00
/*
This file is part of Mitsuba, a physically based rendering system.
Copyright (c) 2007-2011 by Wenzel Jakob and others.
Mitsuba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Mitsuba is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#if !defined(__MICROFACET_H)
#define __MICROFACET_H
#include <mitsuba/mitsuba.h>
#include <boost/algorithm/string.hpp>
MTS_NAMESPACE_BEGIN
/**
* Implements the microfacet distributions discussed in
* "Microfacet Models for Refraction through Rough Surfaces"
* by Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance
*/
class MicrofacetDistribution {
public:
/// Supported distribution types
enum EType {
/// Beckmann distribution derived from Gaussian random surfaces
EBeckmann = 0,
2011-07-06 23:52:02 +08:00
/// Classical Phong distribution
EPhong = 1,
2011-07-06 23:52:02 +08:00
/// Long-tailed distribution proposed by Walter et al.
EGGX = 2,
/// Anisotropic distribution by Ashikhmin and Shirley
EAshikhminShirley = 3
2011-07-06 23:52:02 +08:00
};
/// Create a microfacet distribution of the specified type
MicrofacetDistribution(EType type = EBeckmann)
: m_type(type) { }
/**
* \brief Create a microfacet distribution of the specified name
* (ggx/phong/beckmann/as)
2011-07-06 23:52:02 +08:00
*/
MicrofacetDistribution(const std::string &name) {
std::string distr = boost::to_lower_copy(name);
2011-07-06 23:52:02 +08:00
if (distr == "beckmann")
m_type = EBeckmann;
else if (distr == "phong")
m_type = EPhong;
else if (distr == "ggx")
m_type = EGGX;
else if (distr == "as")
m_type = EAshikhminShirley;
2011-07-06 23:52:02 +08:00
else
SLog(EError, "Specified an invalid distribution \"%s\", must be "
"\"beckmann\", \"phong\", \"ggx\", or \"as\"!", distr.c_str());
2011-07-06 23:52:02 +08:00
}
/// Return the distribution type
inline EType getType() const { return m_type; }
/**
* \brief Convert the roughness values so that they behave similarly to the
* Beckmann distribution.
*
* Also clamps to the minimal roughness 1e-4 to avoid numerical issues
* (For lower roughness values, please switch to the smooth BSDF variants)
*/
Float transformRoughness(Float value) const {
if (m_type == EPhong || m_type == EAshikhminShirley)
2011-07-06 23:52:02 +08:00
value = 2 / (value * value) - 2;
return std::max(value, (Float) 1e-4f);
}
/**
* \brief Implements the microfacet distribution function D
*
* \param m The microsurface normal
* \param alphaU Surface roughness in the tangent directoin
* \param alphaV Surface roughness in the bitangent direction
2011-07-06 23:52:02 +08:00
*/
Float eval(const Vector &m, Float alphaU, Float alphaV) const {
2011-07-06 23:52:02 +08:00
if (Frame::cosTheta(m) <= 0)
return 0.0f;
Float result;
switch (m_type) {
case EBeckmann: {
/* Beckmann distribution function for Gaussian random surfaces */
2011-07-07 20:36:22 +08:00
const Float ex = Frame::tanTheta(m) / alphaU;
result = std::exp(-(ex*ex)) / (M_PI * alphaU*alphaU *
2011-07-06 23:52:02 +08:00
std::pow(Frame::cosTheta(m), (Float) 4.0f));
}
break;
case EPhong: {
/* Phong distribution function */
2011-07-07 20:36:22 +08:00
result = (alphaU + 1) * INV_TWOPI
* std::pow(Frame::cosTheta(m), alphaU);
2011-07-06 23:52:02 +08:00
}
break;
2011-07-07 20:36:22 +08:00
2011-07-06 23:52:02 +08:00
case EGGX: {
/* Empirical GGX distribution function for rough surfaces */
const Float tanTheta = Frame::tanTheta(m),
cosTheta = Frame::cosTheta(m);
2011-07-07 20:36:22 +08:00
const Float root = alphaU / (cosTheta*cosTheta *
(alphaU*alphaU + tanTheta*tanTheta));
2011-07-06 23:52:02 +08:00
result = INV_PI * (root * root);
}
break;
case EAshikhminShirley: {
const Float cosTheta = Frame::cosTheta(m);
2011-07-07 20:36:22 +08:00
const Float ds = 1 - cosTheta * cosTheta;
if (ds < 0)
return 0.0f;
const Float exponent = (alphaU * m.x * m.x
+ alphaV * m.y * m.y) / ds;
result = std::sqrt((alphaU + 2) * (alphaV + 2))
* INV_TWOPI * std::pow(cosTheta, exponent);
}
break;
2011-07-07 20:36:22 +08:00
2011-07-06 23:52:02 +08:00
default:
SLog(EError, "Invalid distribution function!");
return 0.0f;
}
2011-07-07 20:36:22 +08:00
2011-07-06 23:52:02 +08:00
/* Prevent potential numerical issues in other stages of the model */
if (result < 1e-20f)
result = 0;
return result;
}
2011-07-07 20:36:22 +08:00
/**
* \brief Returns the density function associated with
* the \ref{sample} function.
*/
Float pdf(const Vector &m, Float alphaU, Float alphaV) const {
/* Usually, this is just D(m) * cos(theta_M) */
if (m_type != EAshikhminShirley)
return eval(m, alphaU, alphaV) * Frame::cosTheta(m);
/* For the Ashikhmin-Shirley model, the sampling density
does not include the cos(theta_M) factor */
const Float cosTheta = Frame::cosTheta(m);
const Float ds = 1 - cosTheta * cosTheta;
if (ds < 0)
return 0.0f;
const Float exponent = (alphaU * m.x * m.x
+ alphaV * m.y * m.y) / ds;
Float result = std::sqrt((alphaU + 1) * (alphaV + 1))
* INV_TWOPI * std::pow(cosTheta, exponent);
/* Prevent potential numerical issues in other stages of the model */
if (result < 1e-20f)
result = 0;
return result;
}
/// Helper routine: sample the first quadrant of the A&S distribution
void sampleFirstQuadrant(Float alphaU, Float alphaV, Float u1, Float u2,
Float &phi, Float &cosTheta) const {
if (alphaU == alphaV)
phi = M_PI * u1 * 0.5f;
else
2011-07-07 20:36:22 +08:00
phi = std::atan(
std::sqrt((alphaU + 1.0f) / (alphaV + 1.0f)) *
std::tan(M_PI * u1 * 0.5f));
const Float cosPhi = std::cos(phi), sinPhi = std::sin(phi);
cosTheta = std::pow(u2, 1.0f /
(alphaU * cosPhi * cosPhi + alphaV * sinPhi * sinPhi + 1.0f));
}
2011-07-06 23:52:02 +08:00
/**
2011-07-07 20:36:22 +08:00
* \brief Draw a sample from the microsurface normal distribution
2011-07-06 23:52:02 +08:00
*
* \param sample A uniformly distributed 2D sample
* \param alphaU Surface roughness in the tangent directoin
* \param alphaV Surface roughness in the bitangent direction
2011-07-06 23:52:02 +08:00
*/
Normal sample(const Point2 &sample, Float alphaU, Float alphaV) const {
2011-07-06 23:52:02 +08:00
/* The azimuthal component is always selected
uniformly regardless of the distribution */
Float phiM = (2.0f * M_PI) * sample.y,
thetaM = 0.0f;
switch (m_type) {
case EBeckmann:
2011-07-07 20:36:22 +08:00
thetaM = std::atan(std::sqrt(-alphaU*alphaU *
2011-07-06 23:52:02 +08:00
std::log(1.0f - sample.x)));
break;
case EPhong:
thetaM = std::acos(std::pow(sample.x, (Float) 1 /
2011-07-07 20:36:22 +08:00
(alphaU + 2)));
2011-07-06 23:52:02 +08:00
break;
case EGGX:
2011-07-07 20:36:22 +08:00
thetaM = std::atan(alphaU * std::sqrt(sample.x) /
2011-07-06 23:52:02 +08:00
std::sqrt(1.0f - sample.x));
break;
2011-07-07 20:36:22 +08:00
case EAshikhminShirley: {
/* Sampling method based on code from PBRT */
Float phi, cosTheta;
2011-07-07 20:36:22 +08:00
if (sample.x < 0.25f) {
sampleFirstQuadrant(alphaU, alphaV,
4 * sample.x, sample.y, phi, cosTheta);
} else if (sample.x < 0.5f) {
sampleFirstQuadrant(alphaU, alphaV,
4 * (0.5f - sample.x), sample.y, phi, cosTheta);
phi = M_PI - phi;
} else if (sample.x < 0.75f) {
sampleFirstQuadrant(alphaU, alphaV,
4 * (sample.x - 0.5f), sample.y, phi, cosTheta);
phi += M_PI;
} else {
sampleFirstQuadrant(alphaU, alphaV,
4 * (1 - sample.x), sample.y, phi, cosTheta);
phi = 2 * M_PI - phi;
}
const Float sinTheta = std::sqrt(
std::max((Float) 0, 1 - cosTheta*cosTheta));
return Vector(
sinTheta * std::cos(phi),
sinTheta * std::sin(phi),
cosTheta
);
}
break;
2011-07-06 23:52:02 +08:00
default:
SLog(EError, "Invalid distribution function!");
}
return Normal(sphericalDirection(thetaM, phiM));
}
/**
* \brief Smith's shadow-masking function G1 for each
* of the supported microfacet distributions
*
* \param v An arbitrary direction
* \param m The microsurface normal
2011-07-06 23:52:02 +08:00
* \param alpha The surface roughness
*/
Float smithG1(const Vector &v, const Vector &m, Float alpha) const {
const Float tanTheta = std::abs(Frame::tanTheta(v));
2011-07-06 23:52:02 +08:00
/* perpendicular incidence -- no shadowing/masking */
if (tanTheta == 0.0f)
return 1.0f;
/* Can't see the back side from the front and vice versa */
if (dot(v, m) * Frame::cosTheta(v) <= 0)
return 0.0f;
switch (m_type) {
2011-07-07 20:36:22 +08:00
case EAshikhminShirley:
2011-07-06 23:52:02 +08:00
case EPhong:
/* Approximation recommended by Bruce Walter: Use
the Beckmann shadowing-masking function with
specially chosen roughness value */
alpha = std::sqrt(0.5f * alpha + 1) / tanTheta;
case EBeckmann: {
/* Use a fast and accurate (<0.35% rel. error) rational
approximation to the shadowing-masking function */
const Float a = 1.0f / (alpha * tanTheta);
const Float aSqr = a * a;
if (a >= 1.6f)
return 1.0f;
return (3.535f * a + 2.181f * aSqr)
/ (1.0f + 2.276f * a + 2.577f * aSqr);
}
break;
case EGGX: {
const Float root = alpha * tanTheta;
return 2.0f / (1.0f + std::sqrt(1.0f + root*root));
}
break;
default:
SLog(EError, "Invalid distribution function!");
return 0.0f;
}
}
/**
* \brief Shadow-masking function for each of the supported
* microfacet distributions
*
* \param wi The incident direction
* \param wo The exitant direction
* \param m The microsurface normal
* \param alpha The surface roughness
*/
Float G(const Vector &wi, const Vector &wo, const Vector &m, Float alphaU, Float alphaV) const {
if (EXPECT_TAKEN(m_type != EAshikhminShirley)) {
2011-07-07 20:36:22 +08:00
return smithG1(wi, m, alphaU) * smithG1(wo, m, alphaV);
} else {
/* Infinite groove shadowing/masking */
const Float nDotM = std::abs(Frame::cosTheta(m)),
nDotWo = std::abs(Frame::cosTheta(wo)),
nDotWi = std::abs(Frame::cosTheta(wi)),
woDotM = absDot(wo, m),
wiDotM = absDot(wi, m);
return std::max((Float) 0, std::min((Float) 1,
std::min(2 * nDotM * nDotWo / woDotM,
2 * nDotM * nDotWi / wiDotM)));
}
}
2011-07-06 23:52:02 +08:00
std::string toString() const {
switch (m_type) {
2011-07-06 23:52:02 +08:00
case EBeckmann: return "beckmann"; break;
case EPhong: return "phong"; break;
case EGGX: return "ggx"; break;
case EAshikhminShirley: return "as"; break;
2011-07-06 23:52:02 +08:00
default:
SLog(EError, "Invalid distribution function");
return "";
}
}
private:
EType m_type;
2011-07-06 23:52:02 +08:00
};
MTS_NAMESPACE_END
#endif /* __MICROFACET_H */