mitsuba-visualize/util.py

201 lines
7.9 KiB
Python
Raw Normal View History

2020-04-19 21:22:34 +08:00
from pathlib import Path
from typing import List
import numpy as np
import set_python_path
from mitsuba.core import Vector, Spectrum, Scheduler, LocalWorker, RemoteWorker, PluginManager, Appender, EInfo, Thread, Transform
from mitsuba.render import Scene, RenderQueue
def axis_unit_vector(axis: str):
"""
Create a unit vector along the given axis
:param axis: 3D axis x, y, or z
:return: A Vector of length one along the specified axis
"""
if axis == 'x':
return Vector(1, 0, 0)
elif axis == 'y':
return Vector(0, 1, 0)
elif axis == 'z':
return Vector(0, 0, 1)
else:
raise ValueError("Choose between x, y, and z")
def read_filelist(filepath: Path) -> List[str]:
"""
Read a list of files from a file (one file per line). Lines beginning with # are ignored
:param filepath: The path of the file containing filenames
:return: A list of filenames as strings
"""
assert filepath.is_file()
with open(filepath, 'r') as f:
return [line for line in f.read().splitlines() if not line.startswith('#')]
def create_spectrum_from_rgb(r: int, g: int, b: int) -> Spectrum:
"""
Create a Mitsuba Spectrum from r, g, and b values
:param r: Red component
:param g: Green component
:param b: Blue component
:return: A Mitsuba Spectrum
"""
assert (0 <= r <= 255 and 0 <= g <= 255 and 0 <= b <= 255), "Provide integer rgb values in the range 0-255"
spectrum = Spectrum()
spectrum.fromSRGB(float(r) / 255., float(g) / 255., float(b) / 255.)
return spectrum
def get_predefined_spectrum(name: str) -> Spectrum:
"""
Get a predefined spectrum from a name string.
Currently supports: light_blue, cornflower_blue, orange
:param name: The spectrum name
:return: A Mitsuba Spectrum
"""
if name == 'light_blue':
return create_spectrum_from_rgb(160, 180, 200)
elif name == 'cornflower_blue':
return create_spectrum_from_rgb(100, 149, 237)
elif name == 'orange':
return create_spectrum_from_rgb(200, 160, 0)
else:
raise ValueError
def prepare_queue(num_local_workers, remote_stream=None) -> RenderQueue:
"""
Prepare a Mitsuba render queue with the given amount of workers
:param num_local_workers: Number of local rendering workers on the CPU (corresponding to CPU cores fully used during rendering)
:param remote_stream: TODO
:return: A mitsuba RenderQueue object
"""
scheduler = Scheduler.getInstance()
queue = RenderQueue()
for worker_idx in range(num_local_workers):
local_worker = LocalWorker(worker_idx, f'LocalWorker-{worker_idx}')
scheduler.registerWorker(local_worker)
if remote_stream is not None:
for idx, stream in enumerate(remote_stream):
remote_worker = RemoteWorker(f'RemoteWorker-{idx}', stream)
scheduler.registerWorker(remote_worker)
scheduler.start()
return queue
def construct_simple_scene(scene_objects, sensor) -> Scene:
"""
Construct a simple scene containing given objects and using the given sensor. Uses the path integrator and constant
emitter
:param scene_objects: All scene child objects to add
:param sensor: The mitsuba sensor definition to use for this scene
:return: The scene created, already configured and initialized
"""
pmgr = PluginManager.getInstance()
integrator = pmgr.create({'type': 'path'})
emitter = pmgr.create({'type': 'constant'})
scene = Scene()
scene.addChild(integrator)
scene.addChild(emitter)
scene.addChild(sensor)
for obj in scene_objects:
scene.addChild(obj)
scene.configure()
scene.initialize()
return scene
def convert_transform2numpy(transform: Transform) -> np.ndarray:
"""
Get a numpy array containing the same transformation matrix values as a Mitsuba Transform object
:param transform: Mitsuba Transform
:return: 4x4 Numpy array representing the transformation matrix
"""
matrix = np.zeros([4, 4], dtype=float)
for i in range(4):
for j in range(4):
matrix[i, j] = transform.getMatrix()[i, j]
return matrix
def distances_from_control_points(camera_poses: List[Transform], control_poses: List[Transform]) -> List[np.ndarray]:
"""
Calculate distance to closest control pose for every camera pose
:param camera_poses: Camera poses in a trajectory
:param control_poses: Control poses to calculate distances to
:return: The minimal distance to a control pose for every camera pose
"""
camera_poses = [convert_transform2numpy(camera.getMatrix()) for camera in camera_poses]
control_poses = [convert_transform2numpy(camera.getMatrix()) for camera in control_poses]
distances = []
for pose in camera_poses:
curr_distances = [np.linalg.norm(pose[:3, 3] - control_pose[:3, 3]) for control_pose in control_poses]
distances.append(np.min(curr_distances))
return distances
def generate_mesh_paths(input_paths: List[Path], base_output_path: Path, selected_meshes: List[str] = None):
"""
Generator for mesh paths. Takes a list of input paths, a base output path and a list of selected scenes.
If an item in input paths is a ply file, it will be yielded. If it is a path, its subelements will be traversed and
yielded if they are ply files and in the list of selected files
:param input_paths: List of ply files or directories containing ply files, or a mixture of both
:param base_output_path: The base output path. If input_paths contains directories, their last components will translate
into a subdirectory in base_output_path
:param selected_meshes: A list of selected meshes in the input_paths subdirectories. Elements have to end with .ply.
Does not apply to elements in input_paths that are ply files.
:return: Yields tuples: (path to ply file, directory output path for this file)
"""
for input_path in input_paths:
if input_path.is_file(): # If it is a ply file, yield
if input_path.suffix == '.ply':
yield input_path, base_output_path
else: # Else, iterate over all files in the directory
for file in input_path.iterdir():
output_path = base_output_path / input_path.name
if not output_path.is_dir():
output_path.mkdir(parents=False)
if file.suffix == '.ply' and (selected_meshes is None or str(file.name) in selected_meshes):
yield file, output_path
def redirect_logger(write_function=print, log_level=EInfo, tqdm_progressbar=None):
"""
Redirect Mitsuba's Logger output to a custom function (so it can be used with e.g. tqdm).
Additionally, can be used to control the log level
:param write_function: A function like print() or tqdm.write() that is used to write log messages and progess bars
:param log_level: The Mitsuba log level (mitsuba.EError, ...)
:param tqdm_progressbar: Optionally, pass a tqdm progress bar. The Mitsuba rendering bar will be set as that bar's description
:return:
"""
class RedirectedAppender(Appender):
def __init__(self, write_function, tqdm_progressbar):
self.write_function = write_function
self.tqdm_progressbar = tqdm_progressbar
super().__init__()
def append(self, log_level, message):
self.write_function(message)
def logProgress(self, progress, name, formatted, eta):
if self.tqdm_progressbar is not None:
self.tqdm_progressbar.set_description_str(formatted.replace('\r', ''), refresh=True)
else:
self.write_function(f"\r{formatted}", end='')
logger = Thread.getThread().getLogger()
logger.clearAppenders()
logger.addAppender(RedirectedAppender(write_function, tqdm_progressbar))
logger.setLogLevel(log_level)
if __name__ == '__main__':
raise NotImplementedError("Cannot call the util script directly")