mitsuba-visualize/mesh.py

163 lines
7.5 KiB
Python
Raw Normal View History

2020-04-19 21:22:34 +08:00
import sys
import argparse
from pathlib import Path
from typing import List, Tuple
from tqdm import tqdm
sys.path.append('')
import set_python_path
from mitsuba.core import *
from mitsuba.render import RenderJob
import util
import cameras
def prepare_ply_mesh(filepath: Path, spectrum, transformation=None):
"""
Prepare a ply mesh: Load from given filepath, apply given color spectrum and (optionally) transformation.
Uses a two-sided bsdf (so no black faces) and recomputed the normals before returning
:param filepath: Path to a ply file
:param spectrum: The color spectrum to use for the diffuse bsdf used for the mesh
:param transformation: Optional transformation to apply to the mesh (toWorld transform)
:return: A mitsuba mesh object
"""
assert filepath.suffix == '.ply', f"{filepath} does not seem to be a ply file"
mesh = PluginManager.getInstance().create({
'type': 'ply',
'filename': str(filepath),
'bsdf': {
'type': 'twosided',
'bsdf': {
'type': 'diffuse',
'diffuseReflectance': spectrum
}
},
'toWorld': transformation if transformation is not None else Transform()
})
mesh.computeNormals(True)
return mesh
def render_multiple_perspectives(mesh_path: Tuple[Path, Path], sensors: list, num_workers=8) -> None:
"""
Render one mesh from multiple camera perspectives
:param mesh_path: Path tuples (input_filepath, output_dirpath) of the mesh to render
:param sensors: The Mitsuba sensor definitions to render the mesh with
:param num_workers: Number of CPU cores to use for rendering
:return:
"""
queue = util.prepare_queue(num_workers)
input_path, output_path = mesh_path
# Make Mesh
mesh = prepare_ply_mesh(input_path, util.get_predefined_spectrum('light_blue'))
with tqdm(total=len(sensors), bar_format='Total {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}] {desc}', dynamic_ncols=True) as t:
util.redirect_logger(tqdm.write, EWarn, t)
for idx, sensor in enumerate(sensors):
t.write(f"Rendering with sensor {idx}")
# Make Scene
scene = util.construct_simple_scene([mesh], sensor)
scene.setDestinationFile(str(output_path / f'{input_path.stem}-{idx}.png'))
# Make Result
job = RenderJob(f'Render-{input_path.stem}-{idx}', scene, queue)
job.start()
queue.waitLeft(0)
queue.join()
t.update()
def render_multiple_meshes(mesh_paths: List[Tuple[Path, Path]],
radius_multiplier=3., positioning_vector=Vector3(0, 1, 1), tilt=Transform.rotate(util.axis_unit_vector('x'), 20.),
width=1920, height=1440, num_samples=256, num_workers=8) -> None:
"""
Render multiple meshes with the camera always in the same relative position (based on the mesh).
:param mesh_paths: Path tuples (input_filepath, output_dirpath) of the meshes to render
:param radius_multiplier: Parameter passed to cameras.create_transform_on_bbsphere
:param positioning_vector: Parameter passed to cameras.create_transform_on_bbsphere
:param tilt: Parameter passed to cameras.create_transform_on_bbsphere
:param width: Parameter passed to cameras.create_sensor_from_transform
:param height: Parameter passed to cameras.create_sensor_from_transform
:param num_samples: Parameter passed to cameras.create_sensor_from_transform
:param num_workers: Number of CPU cores to use for rendering
:return:
"""
queue = util.prepare_queue(num_workers)
mesh_paths = list(mesh_paths)
with tqdm(total=len(mesh_paths), bar_format='Total {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}] {desc}', dynamic_ncols=True) as t:
util.redirect_logger(tqdm.write, EWarn, t)
for mesh_path in mesh_paths:
input_path, output_path = mesh_path
t.write(f'Rendering {input_path.stem}')
# Make Mesh
mesh = prepare_ply_mesh(input_path, util.get_predefined_spectrum('light_blue'))
# Make sensor
sensor_transform = cameras.create_transform_on_bbsphere(mesh.getAABB(), radius_multiplier, positioning_vector, tilt)
sensor = cameras.create_sensor_from_transform(sensor_transform, width, height, fov=45., num_samples=num_samples)
# Make Scene
scene = util.construct_simple_scene([mesh], sensor)
scene.setDestinationFile(str(output_path / f'{input_path.stem}.png'))
# Make Result
job = RenderJob(f'Render-{input_path.stem}', scene, queue)
job.start()
queue.waitLeft(0)
queue.join()
t.update()
def main(args):
input_paths = [Path(path_str) for path_str in args.input_paths]
output_path = Path(args.output)
assert all([path.exists() for path in input_paths])
assert output_path.parent.is_dir()
if not output_path.is_dir():
output_path.mkdir(parents=False)
if args.scenes_list is None and args.scene is None:
mesh_paths = util.generate_mesh_paths(input_paths, output_path)
elif args.scenes_list is not None and args.scene is None:
mesh_paths = util.generate_mesh_paths(input_paths, output_path, util.read_filelist(Path(args.scenes_list)))
else: # args.scene is not None:
mesh_paths = util.generate_mesh_paths(input_paths, output_path, [args.scene])
if args.cameras is None:
render_multiple_meshes(mesh_paths,
radius_multiplier=3., positioning_vector=Vector3(0, 1, 1),
tilt=Transform.rotate(util.axis_unit_vector('x'), 20.),
width=args.width, height=args.height, num_samples=args.samples,
num_workers=args.workers)
else:
sensor_transforms = cameras.read_meshlab_sensor_transforms(Path(args.cameras))
sensors = [cameras.create_sensor_from_transform(transform, args.width, args.height, fov=45., num_samples=args.samples)
for transform in sensor_transforms]
render_multiple_perspectives(next(mesh_paths), sensors, num_workers=args.workers)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Render directory')
parser.add_argument('input_paths', nargs='*', help='Path(s) to directory containing all files to render')
parser.add_argument('-o', '--output', required=True, help='Path to write renderings to')
# Scene render parameters
parser.add_argument('--scenes_list', required=False, help='Path to file containing filenames to render in base path')
parser.add_argument('--scene', required=False, help='One scene. Overrides scenes_list')
parser.add_argument('--cameras', required=False, help='XML file containing meshlab cameras')
# Sensor parameters
parser.add_argument('--width', default=1280, type=int, help='Width of the resulting image')
parser.add_argument('--height', default=960, type=int, help='Height of the resulting image')
parser.add_argument('--samples', default=128, type=int, help='Number of integrator samples per pixel')
# General render parameters
parser.add_argument('--workers', required=False, default=8, type=int, help="How many concurrent workers to use")
main(parser.parse_args())